Resuelve

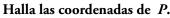
Página 187

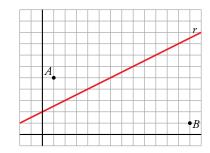
El embarcadero

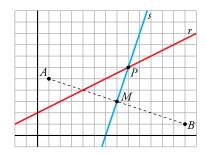
Tenemos dos pueblos, A y B, cada uno a un lado de un canal. Se desea construir un embarcadero situado exactamente a la misma distancia de los dos pueblos. ¿Dónde habrá que hacerlo?

Para decidirlo, colocamos unos ejes coordenados y razonamos del siguiente modo:

Los puntos de la mediatriz del segmento AB están a la misma distancia de los extremos de este. Por tanto, el punto buscado, P, es la intersección de la recta r (el canal) con la recta s (perpendicular a AB en su punto medio).







Coordenadas de A = (1, 5)

Coordenadas de B = (13, 1)

Hallamos las coordenadas de M, punto medio entre A y B.

$$M = \left(\frac{1+13}{2}, \frac{5+1}{2}\right) = (7, 3)$$

Hallamos el vector $\overrightarrow{AB} = (13, 1) - (1, 5) = (12, -4)$

La recta s pasa por M y tiene vector de dirección $\vec{d} = (4, 12)$.

La ecuación de s es: $\frac{x-7}{4} = \frac{y-3}{12}$

La ecuación de r es $y = \frac{1}{2}x + 2$.

P es la solución del sistema: $\begin{cases} y = \frac{1}{2}x + 2 \\ \frac{x - 7}{4} = \frac{y - 3}{12} \end{cases} \rightarrow x = 8, \ y = 6$

Solución: P = (8, 6)

Puntos y vectores en el plano

Página 189

Hazlo tú. Averigua m para que P(1,4), Q(5,-2) y R(m,0) estén alineados.

$$\overrightarrow{PQ} = (4, -6)$$

$$\overrightarrow{QR} = (m, 0) - (5, -2) = (m - 5, 2)$$

$$\frac{4}{m-5} = \frac{-6}{2} \rightarrow m-5 = \frac{-3}{4} \rightarrow m = \frac{17}{4} = 4,25$$

1 Halla las coordenadas de \overrightarrow{MN} y \overrightarrow{NM} , siendo M(7, -5) y N(-2, -11).

$$\overrightarrow{MN} = (-2, -11) - (7, -5) = (-9, -6)$$

$$\overrightarrow{NM} = (7, -5) - (-2, -11) = (9, 6)$$

2 Averigua si están alineados los puntos P(7, 11), Q(4, -3) y R(10, 25).

$$\overrightarrow{PQ} = (-3, -14)$$
 $\overrightarrow{QR} = (6, 28)$
 $\rightarrow \frac{-3}{6} = \frac{-14}{28} \rightarrow A, B y C \text{ están alineados.}$

 $\mathbf{3}$ Calcula el valor de k para que los siguientes puntos de coordenadas

$$B(-3,4)$$

estén alineados.

$$\frac{\overrightarrow{AB} = (-4, -3)}{\overrightarrow{BC} = (k+3, 1)} \rightarrow \frac{-4}{k+3} = \frac{-3}{1} \rightarrow -4 = -3k - 9 \rightarrow 3k = -5 \rightarrow k = \frac{-5}{3}$$

Página 190

- **4** Dados los puntos P(3, 9) y Q(8, -1):
 - a) Halla el punto medio de PQ.
 - b) Halla el simétrico de P respecto de Q.
 - c) Halla el simétrico de Q respecto de P.
 - d) Obtén un punto A de PQ tal que $\overrightarrow{PA}/\overrightarrow{AQ}$ = 2/3.
 - e) Obtén un punto B de PQ tal que $\overrightarrow{PB}/\overrightarrow{PQ}$ = 1/5.

a)
$$M\left(\frac{3+8}{2}, \frac{9+(-1)}{2}\right) = \left(\frac{11}{2}, 4\right)$$

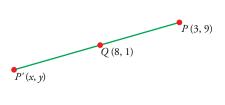
b)
$$\frac{3+x}{2} = 8 \rightarrow x = 13$$

 $\frac{9+y}{2} = -1 \rightarrow y = -11$ $P'(13, -11)$

c) Llamamos Q'(x', y') al simétrico de Q respecto de P.

Así:
$$\frac{x'+8}{2} = 3 \rightarrow x' = -2$$

 $\frac{y'+(-1)}{2} = 9 \rightarrow y' = 19$ $Q'(-2, 19)$





d) Llamamos A(x, y) al punto que buscamos. Debe cumplirse que:

$$\overrightarrow{PA} = \frac{2}{3} \overrightarrow{AQ} \rightarrow (x-3, y-9) = \frac{2}{3} (8-x, -1-y)$$

$$x-3 = \frac{2}{3}(8-x) \to x=5$$

$$y-9 = \frac{2}{3}(-1-y) \to y=5$$

$$A(5,5)$$

e) Llamamos B(x, y) al punto que buscamos.

$$\overrightarrow{PB} = \frac{1}{5} \overrightarrow{PQ} \rightarrow (x-3, y-9) = \frac{1}{5} (5, -10) = (1, -2)$$

$$\begin{cases}
 x - 3 = 1 \to x = 4 \\
 y - 9 = -2 \to y = 7
 \end{cases}
 B(4, 7)$$

Ecuaciones de una recta

Página 192

Hazlo tú. Obtén las ecuaciones paramétricas y la ecuación continua de la recta que pasa por los puntos P(7,-4) y Q(3,2).

Vector de posición de $P: \vec{p} = (7, -4)$

Vector de dirección de la recta: $\vec{d} = (3, 2) - (7, -4) = (-4, 6)$

Ecuaciones paramétricas:

$$\begin{cases} x = 7 - 4\lambda \\ y = -4 + 6\lambda \end{cases}$$

Ecuación en forma continua:

$$\frac{x-7}{-4} = \frac{y+4}{6}$$

Hazlo tú. Obtén las ecuaciones paramétricas de la recta $\frac{x-5}{0} = \frac{y}{-7}$.

Vector de posición de $P: \vec{p} = (5, 0)$

Vector de dirección de la recta: $\vec{d} = (0, -7)$

Ecuaciones paramétricas:

$$\begin{cases} x = 5 \\ y = -7\lambda \end{cases}$$

Página 194

Hazlo tú. Obtén todas las formas posibles de la ecuación de la recta que pasa por A(-2,5) y B(3,-5).

Vector de posición de $A: \overrightarrow{OA} = (-2, 5)$

Vector de dirección de la recta: $\vec{d} = (3, -5) - (-2, 5) = (5, -10) = 5(1, -2)$

Vamos a tomar como vector de dirección de la recta un vector proporcional al anterior: $\overrightarrow{d}' = (1, -2)$.

Ecuaciones paramétricas:

$$\begin{cases} x = -2 + \lambda \\ y = 5 - 2\lambda \end{cases}$$

Ecuación en forma continua:

$$\frac{x+2}{1} = \frac{y-5}{-2}$$

Ecuación implícita:

$$-2(x+2) = y-5 \rightarrow -2x-4 = y-5 \rightarrow -2x-y+1=0$$

Ecuación explícita:

$$y = -2x + 1$$

Ecuación punto-pendiente:

$$m = \frac{-2}{1}$$

$$y = -2(x+2) + 5$$

Hazlo tú. Obtén la ecuación implícita de r: $\begin{cases} x = 5t \\ y = 4 - t \end{cases}$.

$$\frac{x}{5} = \frac{y-4}{-1} \rightarrow -x = 5y - 20 \rightarrow -x - 5y + 20 = 0$$

Página 195

Hazlo tú. Da las ecuaciones paramétricas de la recta y = -2x + 7.

Encontramos un punto A de la recta dando a x el valor 0: $x = 0 \rightarrow A = (0, 7)$

$$m = -2 \rightarrow \vec{d} = (1, -2)$$

Ecuaciones paramétricas: $\begin{cases} x = \lambda \\ y = 7 - 2\lambda \end{cases}$

Hazlo tú. Halla las ecuaciones paramétricas e implícita de la recta $\frac{x-5}{0} = \frac{y+1}{2}$.

Punto de la recta: A = (5, -1)

$$\vec{d} = (0, 2)$$

Ecuaciones paramétricas:
$$\begin{cases} x = 5 \\ y = -1 + 2\lambda \end{cases}$$

Ecuación implícita: x = 5

1 Halla las ecuaciones paramétricas, continua, implícita y explícita de la recta que pasa por A y B, en cada caso:

a)
$$A(-1, -1)$$
, $B(3, 3)$

b)
$$A(0, 4), B(6, 0)$$

c)
$$A(3,5)$$
, $B(-1,5)$

a)
$$A(-1, -1)$$
, $B(3, 3) \rightarrow \overrightarrow{AB} = (4, 4)$

Paramétricas:
$$\begin{cases} x = 3 + 4\lambda \\ y = 3 + 4\lambda \end{cases}$$

Continua:
$$\frac{x-3}{4} = \frac{y-3}{4}$$

Implícita:
$$x - y = 0$$

Explícita:
$$y = x$$

b)
$$A(0, 4), B(6, 0) \rightarrow \overrightarrow{AB} = (6, -4)$$

Paramétricas:
$$\begin{cases} x = 6\lambda \\ y = 4 - 4\lambda \end{cases}$$

Continua:
$$\frac{x}{6} = \frac{y-4}{-4}$$

Implícita:
$$-4x - 6y + 24 = 0$$

Explícita:
$$y = \frac{-4}{6}x + 4$$

c)
$$A(3, 5), B(-1, 5) \rightarrow \overrightarrow{AB} = (-4, 0)$$

Paramétricas:
$$\begin{cases} x = 3 - 4\lambda \\ y = 5 \end{cases}$$

Continua:
$$\frac{x-3}{-4} = \frac{y-5}{0}$$

Implícita:
$$y - 5 = 0$$

Explícita:
$$y = 5$$

d)
$$A(3, 5)$$
, $B(3, 2) \rightarrow \overrightarrow{AB} = (0, -3)$

Paramétricas:
$$\begin{cases} x = 3 \\ y = 5 - 3\lambda \end{cases}$$

Continua:
$$\frac{x-3}{0} = \frac{y-5}{-3}$$

Implícita:
$$x - 3 = 0$$

Explícita: No existe, pues se trata de una recta vertical de ecuación
$$x = 3$$
.

2 Obtén las ecuaciones implícita, paramétricas y continua de la recta y = 2x + 3.

$$y = 2x + 3$$

• Buscamos dos puntos de la recta y su vector dirección:

Si
$$x = 0 \rightarrow y = 2 \cdot 0 + 3 = 3 \rightarrow A(0,3)$$

Si $x = 1 \rightarrow y = 2 \cdot 1 + 3 = 5 \rightarrow B(1,5)$ $\rightarrow \overrightarrow{AB} = (1, 2)$

- Implícita: 2x y + 3 = 0
- Paramétricas:

$$\begin{cases} x = \lambda \\ y = 3 + 2\lambda \end{cases}$$

• Continua:

$$\frac{x-0}{1} = \frac{y-3}{2}$$

- **3** a) Encuentra dos puntos, P y Q, pertenecientes a la recta r: 2x 3y + 6 = 0.
 - b) Comprueba que \overrightarrow{PQ} es perpendicular a (2, -3).
 - c) Escribe las ecuaciones paramétricas de r.
 - d) Escribe su ecuación explícita y comprueba que el vector (1, m) es paralelo a \overrightarrow{PQ} (m es la pendiente de r).

a)
$$r: 2x - 3y + 6 = 0$$

Si
$$x = 0 \rightarrow 2 \cdot 0 - 3y + 6 = 0 \rightarrow y = 2 \rightarrow P(0, 2)$$

Si
$$x = -3 \rightarrow 2 \cdot (-3) - 3y + 6 = 0 \rightarrow y = 0 \rightarrow Q(-3, 0)$$

b)
$$\overrightarrow{PQ} = (-3, -2)$$

$$\overrightarrow{PO} \perp (2, -3) \Leftrightarrow \overrightarrow{PO} \cdot (2, -3) = 0$$

$$(-3, -2) \cdot (2, -3) = (-3) \cdot 2 + (-2) \cdot (-3) = -6 + 6 = 0$$

c)
$$r: \begin{cases} x = -3\lambda \\ y = 2 - 2\lambda \end{cases}$$

d) Despejamos γ en la ecuación de r:

$$2x - 3y + 6 = 0 \rightarrow 2x + 6 = 3y \rightarrow \frac{2}{3}x + 2 = y$$

Explícita:
$$y = \frac{2}{3}x + 2$$

$$m = \frac{2}{3} \rightarrow (1, m) = \left(1, \frac{2}{3}\right)$$

El vector $\left(1, \frac{2}{3}\right)$ es paralelo a \overrightarrow{PQ} si sus coordenadas son proporcionales:

$$(-3, -2) = \lambda \left(1, \frac{2}{3}\right) \rightarrow \lambda = -3$$

Los vectores son proporcionales y, por tanto, paralelos.

Haz de rectas

Página 196

1 Halla la recta del haz de centro P(-3, 5) que pasa por (8, 4).

Hemos de hallar la recta que pasa por P(-3, 5) y Q(8, 4).

$$\overrightarrow{PQ} = (11, -1)$$

$$r: \frac{x+3}{11} = \frac{y-5}{-1}$$

2 Los haces de rectas cuyos centros son P(4,0) y Q(-6,4) tienen una recta en común. ¿Cuál es?

Es la recta que pasa por P(4, 0) y Q(-6, 4).

$$\overrightarrow{PQ} = (-10, 4)$$

$$r: \frac{x-4}{-10} = \frac{y-0}{4}$$

3 Las siguientes rectas:

$$r: 3x - 5y - 7 = 0$$
 $s: x + y + 4 = 0$

forman parte de un mismo haz. ¿Cuál de las rectas de ese haz tiene pendiente 4?

• El centro del haz es el punto de corte de r y s. Lo hallamos:

$$3x - 5y - 7 = 0 x + y + 4 = 0$$
 $\rightarrow x = -y - 4$

$$3(-y-4) - 5y - 7 = 0 \rightarrow -8y - 19 = 0 \rightarrow y = -\frac{19}{8}$$

$$x = -y - 4 = \frac{19}{8} - 4 = -\frac{13}{8}$$

El centro del haz es el punto
$$P\left(-\frac{13}{8}, -\frac{19}{8}\right)$$
.

• Ecuación de la recta que pasa por P y tiene pendiente igual a 4:

$$y = \frac{19}{8} + 4\left(x + \frac{13}{8}\right) \rightarrow 32x - 8y + 7 = 0$$

Reflexiones sobre ecuaciones con y sin "parámetros"

Página 197

1 Representa.

a)
$$x = 5$$

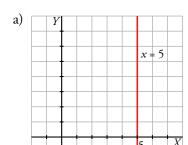
b)
$$\begin{cases} x = 5 \\ y = \lambda \end{cases}$$
 c) $\begin{cases} x = 5 \\ y = 2 \end{cases}$ d) $y = 2$ e) $\begin{cases} x = \lambda \\ y = \lambda \end{cases}$ f) $\begin{cases} x = \lambda \\ y = \mu \end{cases}$

c)
$$\begin{cases} x = 5 \\ y = 2 \end{cases}$$

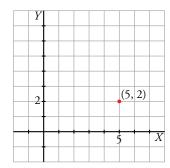
$$\mathbf{d})\,y=2$$

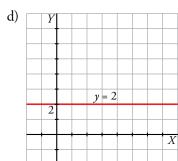
e)
$$\begin{cases} x = \lambda \\ y = \lambda \end{cases}$$

$$\mathbf{f} \left\{ \begin{array}{l} \mathbf{x} = \lambda \\ \mathbf{v} = \mathbf{u} \end{array} \right.$$

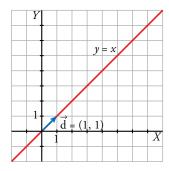


- b) Es la misma que la del apartado a).
- c) Es un punto, el punto (5, 2).





e) Pasa por O = (0, 0). Tiene vector de dirección $\vec{d} = (1, 1)$.



f) Tenemos cualquier punto del plano, pues no hay ninguna restricción.

Paralelismo y perpendicularidad

Página 198

l ¿Verdadero o falso? Cada una de las siguientes rectas es paralela a $\frac{x-2}{5} = \frac{y-1}{2}$:

a)
$$2x + 5y - 4 = 0$$

$$b) 5x + 2y = 0$$

c)
$$2x - 5y + 1 = 0$$

d)
$$y = \frac{5}{2}x + 4$$

e)
$$y = \frac{-5}{2}x + 1$$
 f) $y = \frac{2}{5}x - 3$

f)
$$y = \frac{2}{5}x - 3$$

El vector de dirección de la recta $\frac{x-2}{5} = \frac{y-2}{2}$ es $\vec{d} = (5, 2)$.

a) Vector de dirección:
$$(-5, 2) \# (5, 2) \Rightarrow \text{Falso.}$$

b) Vector de dirección:
$$(-2, 5) \# (5, 2) \Rightarrow \text{Falso.}$$

c) Vector de dirección:
$$(5, 2) // (5, 2) \Rightarrow Verdadero$$
.

d)
$$m = \frac{5}{2}$$
 \rightarrow Vector de dirección: $(2, 5) \# (5, 2) \Rightarrow$ Falso.

e)
$$m = -\frac{5}{2}$$
 \rightarrow Vector de dirección: $(2, -5) \# (5, 2) \Rightarrow$ Falso.

f)
$$m = \frac{2}{5}$$
 \rightarrow Vector de dirección: $(5, 2) // (5, 2) \Rightarrow$ Verdadero.

2 ¿Verdadero o falso? Cada una de las siguientes rectas es perpendicular a x - 2y + 4 = 0:

a)
$$\begin{cases} x = y + t \\ y = 1 - 2t \end{cases}$$

b)
$$\begin{cases} x = 1 - 2t \\ y = 3 + t \end{cases}$$
 c)
$$\begin{cases} x = t \\ y = 2t \end{cases}$$

$$c) \begin{cases} x = t \\ y = 2t \end{cases}$$

$$\mathbf{d}) \, \mathbf{v} = 2\mathbf{x} + \mathbf{1}$$

e)
$$y = -2x + 3$$

f)
$$y = \frac{x}{2}$$

El vector perpendicular a la recta x - 2y + 4 = 0 es (1, -2).

a) Vector de dirección:
$$(1, -2) // (1, -2) \Rightarrow Verdadero$$
.

b) Vector de dirección:
$$(-2, 1) \# (1, -2) \Rightarrow \text{Falso.}$$

c) Vector de dirección:
$$(1, 2) \# (1, -2) \Rightarrow$$
 Falso.

d)
$$m = 2 \rightarrow \text{Vector de dirección: } (1, 2) \# (1, -2) \Rightarrow \text{Falso}$$

e)
$$m=-2 \rightarrow \text{Vector de dirección: } (1,-2) // (1,-2) \Rightarrow \text{Verdadero.}$$

f)
$$m = \frac{1}{2} \rightarrow \text{Vector de dirección: } (2, 1) \# (1, -2) \Rightarrow \text{Falso.}$$

Página 199

Hazlo tú. Halla una paralela y una perpendicular a $r: \frac{x+5}{3} = \frac{y-1}{-2}$ que pasen por (7, -5).

El vector de dirección de la recta $\frac{x+5}{3} = \frac{y-1}{-2}$ es $\vec{d} = (3, -2)$. Vector normal: $\vec{n} = (2, 3)$.

Recta paralela:

$$r_1: \begin{cases} x = 7 + 3\lambda \\ y = -5 - 2\lambda \end{cases}$$

Recta perpendicular:

$$r_2: \begin{cases} x = 7 + 2\lambda \\ y = -5 + 3\lambda \end{cases}$$

Hazlo tú. Halla la recta $r_1 \parallel r$: 5x - y + 4 = 0 que pase por (3, -5); y la recta $r_2 \perp r$ que pase por (0, 0).

El vector de dirección de la recta r: 5x - y + 4 = 0 es $\vec{d} = (-1, -5) = -(1, 5)$. Vector normal: $\vec{n} = (5, -1)$.

Recta paralela:

$$r_1: \begin{cases} x = 3 + \lambda \\ y = -5 + 5\lambda \end{cases}$$

Recta perpendicular:

$$r_2: \begin{cases} x = 3 + 5\lambda \\ y = -5 - \lambda \end{cases}$$

Hazlo tú. Dada la recta $r: \frac{x+5}{2} = \frac{y}{-5}$, halla:

- a) Las ecuaciones paramétricas de $r_1 \perp r$ que pase por (-2, 0).
- b) La ecuación implícita de $r_2 /\!\!/ r$ que pase por (0, -3).
- c) La ecuación explícita de $r_3 /\!\!/ r$ que pase por (-3, 5).

El vector de dirección de la recta $\frac{x+5}{2} = \frac{y}{-5}$ es $\vec{d} = (2, -5)$. Vector normal: $\vec{n} = (5, 2)$.

a) Recta perpendicular:

$$r_1$$
:
$$\begin{cases} x = -2 + 5\lambda \\ y = 2\lambda \end{cases}$$

b) Recta paralela:

$$r_2$$
: $\frac{x}{2} = \frac{y+3}{-5} \rightarrow -5x = 2y+6 \rightarrow -5x-2y-6 = 0$

c) Recta paralela:

$$r_3$$
: $\frac{x+3}{2} = \frac{y-5}{-5} \rightarrow -5x - 15 = 2y - 10 \rightarrow -5x - 2y - 5 = 0 \rightarrow y = -\frac{5}{2}x - \frac{5}{2}$

 $\bf 3$ Escribe las ecuaciones paramétricas de dos rectas que pasen por P(4,-3) y sean paralela y perpen-

dicular, respectivamente, a
$$r: \begin{cases} x = 2 - 5t \\ y = 4 + 2t \end{cases}$$

$$r:\begin{cases} x=2-5t \\ y=4+2t \end{cases}$$
 Vector dirección de $r: \overrightarrow{v}_r = (-5, 2)$

• Recta paralela a r que pasa por P:

$$P(4, -3); \vec{v}_s = \vec{v}_r = (-5, 2)$$

$$s: \begin{cases} x = 4 - 5t \\ y = -3 + 2t \end{cases}$$

• Recta perpendicular a r que pasa por P:

$$P(4, -3); \ \mathbf{v}_{l} = (2, 5)$$

$$l: \begin{cases} x = 4 + 2t \\ y = -3 + 5t \end{cases}$$

- 4 Dada la recta r: y = -2x + 5, halla:
 - a) Las ecuaciones paramétricas de una recta r_1 paralela a r que pase por (0, -2).
 - b) La ecuación explícita de una recta r_2 paralela a r y de otra r_3 , perpendicular a r y que ambas pasen por (0, 1).
 - c) La ecuación implícita de una recta r_4 , perpendicular a r y que pase por (-2, 5).

$$r: y = -2x + 5$$

Pendiente $m = -2 \rightarrow \text{Vector de dirección de la recta es } \vec{d} = (1, -2). \text{ Vector normal: } \vec{n} = (2, 1).$

a)
$$r_1$$
:
$$\begin{cases} x = \lambda \\ y = -2 - 2\lambda \end{cases}$$

b)
$$r_2$$
: $\frac{x}{1} = \frac{y-1}{-2} \rightarrow -2x = y-1 \rightarrow y = -2x + 1$

$$r_3$$
: $\frac{x}{2} = \frac{y-1}{1} \rightarrow x = 2y-2 \rightarrow x-2y+2 = 0 \rightarrow y = \frac{1}{2}x+1$

c)
$$r_4$$
: $\frac{x+2}{2} = \frac{y-5}{1} \rightarrow x+2 = 2y-10 \rightarrow x-2y+12 = 0$

- 5 Dada s: $\begin{cases} x = 5 t \\ y = 3t \end{cases}$, halla:
 - a) La ecuación continua de una recta r_1 perpendicular a s que pase por $P_1(5, -3)$.
 - b) La ecuación implícita de r_2 paralela a s que pase por $P_2(0, 4)$.
 - c) La ecuación explícita de r_3 perpendicular a s que pase por $P_3(-3,0)$.

a) El vector dirección de r_1 es $\overrightarrow{v}_{r_1} = (3, 1)$. $P_1(5, -3) \in r_1$.

$$r_1$$
: $\frac{x-5}{3} = \frac{y+3}{1}$

b) El vector dirección de r_2 es el mismo que el de s: $\overrightarrow{v}_{r_2} = (-1, 3)$. $P_2(0, 4) \in r_2$.

$$r_2$$
: $\frac{x-0}{-1} = \frac{y-4}{3} \rightarrow 3x = -y+4 \rightarrow 3x+y-4=0$

c) El vector dirección de r_3 es el mismo que el de r_1 : $\overrightarrow{v}_{r_3} = (3, 1)$. $P_3(-3, 0) \in r_3$.

$$r_3: \frac{x+3}{3} = \frac{y-0}{1} \rightarrow y = \frac{1}{3}x + 1$$

6 Determina las ecuaciones implícitas de dos rectas que pasen por P(-3, 4) y sean paralela y perpendicular, respectivamente, a r: 5x - 2y + 3 = 0.

$$r: 5x - 2y + 3 = 0 \rightarrow 5x + 3 = 2y \rightarrow y = \frac{5}{2}x + \frac{3}{2}$$

La pendiente de r es $m_r = \frac{5}{2}$

• Recta s paralela a r que pasa por P(-3, 4):

$$m_s = m_r = \frac{5}{2}$$

$$s: y - 4 = \frac{5}{2}(x+3) \rightarrow s: 5x - 2y + 23 = 0$$

• Recta l perpendicular a r que pasa por P(-3, 4):

$$m_l = -\frac{l}{m_r} = -\frac{2}{5}$$

$$l: y-4=-\frac{2}{5}(x+3) \rightarrow l: 2x+5y-14=0$$

6 Posiciones relativas de dos rectas

Página 200

Hazlo tú. Determina la posición relativa y el punto de corte, si existe, de las rectas:

$$r_1$$
:
$$\begin{cases} x = 1 + 2t \\ y = -5 - 5t \end{cases} \quad y \quad r_2$$
:
$$\begin{cases} x = -4 + t \\ y = 6 - t \end{cases}$$

Vector de dirección de r_1 : $\vec{d} = (2, -5)$

Vector de dirección de r_2 : $\vec{\mathbf{d}}' = (1, -1)$

No son proporcionales, luego las rectas se cortan.

Punto de corte:

$$\begin{cases} 1 + 2t = -4 + s \\ -5 - 5t = 6 - s \end{cases} \rightarrow s = 1, \ t = -2$$

Para esos valores de los parámetros: x = -4 + 1 = -3; y = 6 - 1 = 5

Punto de corte: (-3, 5)

Hazlo tú. Halla la posición relativa de las rectas:

$$r_1$$
:
$$\begin{cases} x = 2t \\ y = 1 + 5t \end{cases} \quad y \quad r_2$$
:
$$\begin{cases} x = 8 + 4t \\ y = 3 + 10t \end{cases}$$

Vector de dirección de r_1 : $\vec{d} = (2, 5)$

Vector de dirección de r_2 : $\vec{\mathbf{d}}' = (4, 10)$

Son proporcionales, (4, 10) = 2(2, 5), luego las rectas son paralelas o coincidentes.

Punto de r_1 : (0, 1)

Sustituimos en r_2 :

$$\begin{cases} 0 = 8 + 4t \\ 1 = 3 + 10t \end{cases} \rightarrow \begin{cases} 0 = 8 + 4t \rightarrow t = -2 \\ 1 = 3 + 10t \rightarrow t = -\frac{1}{5} \end{cases} \rightarrow \text{No hay solución, las rectas son paralelas.}$$

Hazlo tú. Determina la posición relativa de r_1 : $\begin{cases} x = 2t \\ y = 1 + 5t \end{cases}$ y r_2 : $\begin{cases} x = 8 + 4t \\ y = 21 + 10t \end{cases}$.

Vector de dirección de r_1 : $\vec{d} = (2, 5)$

Vector de dirección de r_2 : $\vec{d}' = (4, 10)$

Son proporcionales, (4, 10) = 2(2, 5), luego las rectas son paralelas o coincidentes.

Punto de r_1 : (0, 1)

Sustituimos en r_2 :

$$\begin{cases} 0 = 8 + 4t \\ 1 = 21 + 10t \end{cases} \rightarrow \begin{cases} 0 = 8 + 4t \rightarrow t = -2 \\ 1 = 21 + 10t \rightarrow t = -2 \end{cases}$$

Para t = -2 obtenemos el punto (0, 1) que está en las dos rectas.

Las rectas r_1 y r_2 tienen la misma dirección y un punto en común, luego son coincidentes.

Página 201

1 Averigua la posición relativa de estos pares de rectas:

a)
$$r: 3x + 5y - 8 = 0$$
, $s: 6x + 10y + 4 = 0$

b)
$$r: 2x + y - 6 = 0$$
, $s: x - y = 0$

c)
$$r:\begin{cases} x = 7 + 5t \\ y = -2 - 3t \end{cases}$$
, $s:\begin{cases} x = 2 + t \\ y = 1 - 2t \end{cases}$

d)
$$r: 3x - 5y = 0$$
, $s: \begin{cases} x = 2 + 5t \\ y = 1 + 3t \end{cases}$

a)
$$r: 3x + 5y - 8 = 0 \rightarrow \mathring{n}_r = (3, 5)$$

$$s: 6x + 10y + 4 = 0 \rightarrow n_s = (6, 10)$$

$$\frac{3}{6} = \frac{5}{10} \neq \frac{-8}{4}$$
 \rightarrow Las dos rectas son paralelas.

b)
$$r: 2x + y - 6 = 0 \rightarrow n_r = (2, 1)$$

$$s: x - y = 0 \rightarrow \vec{n}_s = (1, -1)$$

$$\frac{2}{1} \neq \frac{1}{-1} \rightarrow \text{Las dos rectas se cortan.}$$

c)
$$r:\begin{cases} x = 7 + 5t \\ y = -2 - 3t \end{cases} \rightarrow \vec{v}_r = (5, -3)$$

$$s: \begin{cases} x = 2 + t \\ y = 1 - 2t \end{cases} \rightarrow \overrightarrow{\mathbf{v}}_s = (1, -2)$$

$$\frac{5}{1} \neq \frac{-3}{-2}$$
 \rightarrow Las dos rectas se cortan.

d)
$$r: 3x - 5y = 0 \rightarrow \vec{n}_r = (3, -5) \rightarrow \vec{v}_r = (5, 3)$$

$$s:\begin{cases} x = 2 + 5t \\ y = 1 + 3t \end{cases} \rightarrow \vec{v}_s = (5, 3), P_s = (2, 1)$$

Como $\overrightarrow{\mathbf{v}}_r = \overrightarrow{\mathbf{v}}_s \ \mathbf{y} \ P_s \notin r$, las rectas son paralelas.

Ángulo de dos rectas

Página 202

1 Halla el ángulo que forman los siguientes pares de rectas:

a)
$$r_1$$
:
$$\begin{cases} x = 3 - 2t \\ y = 7 + t \end{cases}$$
, r_2 :
$$\begin{cases} x = 1 - 4t \\ y = 4 + 3t \end{cases}$$

b)
$$r_1$$
: $x + 2y - 17 = 0$, r_2 : $3x - 5y + 4 = 0$

c)
$$r_1$$
: $y = 5x - 1$, r_2 : $y = 4x + 3$

d)
$$r_1$$
:
$$\begin{cases} x = 3 - 2t \\ y = 7 + t \end{cases}$$
, r_2 : $3x - 5y + 4 = 0$

a)
$$\vec{v}_{r_1} = (-2, 1); \vec{v}_{r_2} = (-4, 3)$$

$$\cos \alpha = \frac{\left| (-2,1) \cdot (-4,3) \right|}{\left| (-2,1) \right| \left| (-4,3) \right|} = \frac{11}{(\sqrt{5}) \cdot (5)} \approx 0.9838699101 \rightarrow \alpha = 10^{\circ} 18' 17.45''$$

b) Vector normal de r_1 : $\vec{n}_1 = (1, 2)$

Vector normal de r_2 : $\vec{n}_2 = (3, -5)$

$$\cos \alpha = \frac{|(1,2) \cdot (3,-5)|}{|(1,2)||(3,-5)|} = \frac{7}{(\sqrt{5}) \cdot (\sqrt{34})} \approx 0.5368754922 \rightarrow \alpha = 57^{\circ} 31' 43.71''$$

c)
$$m_{r_1} = 5$$
; $m_{r_2} = 4$

$$tg \alpha = \left| \frac{4-5}{1+5\cdot 4} \right| = \frac{1}{21} \approx 0.0476190 \rightarrow \alpha = 2^{\circ} 43' 34.72''$$

d)
$$\vec{v}_{r_1} = (-2, 1); \vec{v}_{r_2} = (5, 3)$$

$$\cos \alpha = \frac{\left| (-2,1) \cdot (5,3) \right|}{\left| (-2,1) \right| \left| (5,3) \right|} = \frac{7}{(\sqrt{5}) \cdot (\sqrt{34})} \approx 0,5368754922 \rightarrow \alpha = 57^{\circ} 31' 43,71''$$

E Cálculo de distancias

Página 203

Hazlo tú. Halla el área de este mismo triángulo tomando como base BC y como altura la distancia de A a la recta BC.

Base:
$$c = \overline{BC} = \sqrt{(2-6)^2 + (5-5)^2} = \sqrt{16} = 4 \text{ u}$$

La recta BC es: y = 5

La altura es:

$$h_c = dist [A, BC] = \frac{|-5|}{\sqrt{1}} = 5 u$$

Por tanto:

Área =
$$\frac{c \cdot h_c}{2} = \frac{4 \cdot 5}{2} = 10 \text{ u}^2$$

1 P(-6, -3), Q(9, 5)

$$r: 3x - 4y + 9 = 0$$
, $s: 5x + 15 = 0$

Halla la distancia entre los dos puntos.

Halla también las distancias de cada uno de los puntos a cada recta.

$$P(-6, -3), Q(9, 5)$$

$$r: 3x - 4y + 9 = 0$$

$$s: 5x + 15 = 0$$

$$dist(P, Q) = |\overrightarrow{PQ}| = |(15, 8)| = \sqrt{15^2 + 8^2} = \sqrt{289} = 17$$

$$dist(P, r) = \frac{\left|3 \cdot (-6) - 4(-3) + 9\right|}{\sqrt{3^2 + (-4)^2}} = \frac{3}{5}$$

$$dist (P, s) = \frac{\left| 5 \cdot (-6) + 15 \right|}{\sqrt{5^2 + 0^2}} = \frac{15}{5} = 3$$

$$dist(Q, r) = \frac{|3 \cdot 9 - 4 \cdot 5 + 9|}{5} = \frac{16}{5}$$

$$dist(Q, s) = \frac{|5 \cdot 9 + 15|}{5} = \frac{60}{5} = 12$$

- 2 a) Halla el área del triángulo de vértices A(-3, 8), B(-3, 2), C(5, 2) con la fórmula de Herón.
 - b) Hállala, también, mediante la aplicación de la fórmula habitual $S = \frac{b \cdot h_b}{2}$, siendo b la medida del lado AC. ¿Hay otra forma más sencilla?

a)
$$A(-3, 8)$$
, $B(-3, 2)$, $C(5, 2)$

Fórmula de Herón:
$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$a = |\overrightarrow{BC}| = |(8,0)| = 8$$

$$b = |\overrightarrow{AC}| = |(8,-6)| = \sqrt{8^2 + (-6)^2} = 10$$

$$c = |\overrightarrow{AB}| = |(0,-6)| = 6$$

$$p = \frac{8+10+6}{2} = 12$$

$$S = \sqrt{12(12-8)(12-10)(12-6)} = \sqrt{12\cdot 4\cdot 2\cdot 6} = \sqrt{576} = 24 \text{ u}^2$$

b)
$$S = \frac{b \cdot h_b}{2}$$

- $b = |\overrightarrow{AC}| = 10$ (del apartado anterior)
- Hallamos la ecuación de la recta que pasa por A(-3, 8) y C(5, 2):

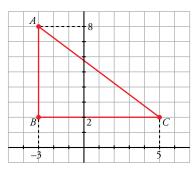
Pendiente:
$$m = \frac{-6}{8} = \frac{-3}{4} \rightarrow y = 2 - \frac{3}{4}(x - 5) \rightarrow r: 3x + 4y - 23 = 0$$

•
$$h_b = dist [B, r] = \frac{|3 \cdot (-3) + 4 \cdot (2) - 23|}{\sqrt{3^2 + 4^2}} = \frac{24}{5}$$

$$S = \frac{10 \cdot (24/5)}{2} = 24 \text{ u}^2$$

Habría sido más sencillo si hubiéramos dibujado el triángulo.

Observa:



Es claro que $\overline{AB} = 6$ y $\overline{BC} = 8$.

Como el triángulo es rectángulo, $S = \frac{\overline{AB} \cdot \overline{BC}}{2} = \frac{6 \cdot 8}{2} = 24 \text{ u}^2.$

Ejercicios y problemas resueltos

Página 204

1. Puntos y vectores en el plano

Hazlo tú. Haz los cálculos para llegar a la solución D'(8,3) de este problema.

$$\overrightarrow{BC}$$
 = (5, 6) – (3, 6) = (2, 0)

$$\overrightarrow{AD} = (x, y) - (0, 3) = (x, y - 3)$$

$$\overrightarrow{AB} = (3, 3)$$

$$\overrightarrow{CD} = (x, y) - (5, 6) = (x - 5, y - 6)$$

Primera condición:

$$\overrightarrow{BC} \parallel \overrightarrow{AD} \rightarrow y - 3 = 0 \rightarrow y = 3$$

Segunda condición:

$$|\overrightarrow{AB}| = |\overrightarrow{CD}| \rightarrow \sqrt{18} = \sqrt{(x-5)^2 + (y-6)^2} \rightarrow 18 = (x-5)^2 + (y-6)^2 \rightarrow 18 = x^2 - 10x + y^2 - 12y + 61$$

$$\begin{cases} y = 3 \\ 18 = x^2 - 10x + y^2 - 12y + 61 \end{cases} \rightarrow 18 = x^2 - 10x + (3)^2 - 12 \cdot 3 + 61 \rightarrow x = 8, \ x = 2$$

Si x = 2, obtenemos un paralelogramo, luego x = 8, y = 3.

$$D' = (8, 3)$$

2. Simétrico de un punto respecto de una recta

Hazlo tú. Halla el punto simétrico de A(2, 2) respecto de la recta r: y = 6 - x.

Pendiente de r: m = -1

Pendiente de la recta s perpendicular a r: $m' = -\frac{1}{-1} = 1$

Vector de dirección de la recta $s: \vec{d}' = (1, 1)$

Ecuación de s:
$$\frac{x-2}{1} = \frac{y-2}{1} \rightarrow x-2 = y-2 \rightarrow x-y=0$$

M es el punto de intersección de las rectas r y s:

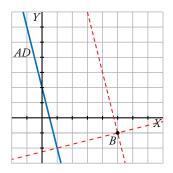
$$\begin{cases} y = 6 - x \\ x - y = 0 \end{cases} \to x = 3, \ y = 3 \to M = (3, 3)$$

M es el punto medio entre A y A' = (x, y)

$$(3,3) = \left(\frac{x+2}{2}, \frac{y+2}{2}\right) \to \begin{cases} 3 = \frac{x+2}{2} \to x = 4\\ 3 = \frac{y+2}{2} \to y = 4 \end{cases} \to A' = (4,4)$$

3. Rectas paralelas y perpendiculares a una dada

Hazlo tú. Del cuadrado ABCD conocemos el vértice B(5,-1) y la ecuación del lado AD, y = -4x + 2. Halla la ecuación de los lados BC y AB.



El lado BC es paralelo a AD y pasa por B = (5, -1):

Pendiente de AD: m = -4

Pendiente de *BC*: m = -4. Vector de dirección de *BC*: $\vec{d} = (1, -4)$

Ecuación de *BC*: $\frac{x-5}{1} = \frac{y+1}{-4}$

El lado AB es perpendicular a AD y pasa por B = (5, -1):

Pendiente de *AB*: $m = \frac{1}{4}$. Vector de dirección de *BC*: $\vec{d}' = (4, 1)$

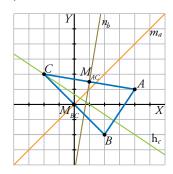
Ecuación de *AB*: $\frac{x-5}{4} = \frac{y+1}{4}$

Página 205

4. Rectas notables en un triángulo

Hazlo tú. En el triángulo de vértices A(4, 1), B(2, -2) y C(-2, 2) calcula la mediatriz relativa al lado BC, la altura que parte de C y la mediana relativa al lado AC.

Usamos la misma notación que en el ejercicio resuelto.



a) La mediatriz relativa al lado BC, m_a , es la perpendicular a \overrightarrow{BC} que pasa por M_{BC} .

$$\overrightarrow{BC} = (-2, 2) - (2, -2) = (-4, 4)$$

$$M_{BC} = \left(\frac{-2+2}{2}, \frac{2-2}{2}\right) = (0, 0)$$

Vector perpendicular a \overrightarrow{BC} : $\overrightarrow{d}' = (4, 4)$

Ecuación de m_a : $\frac{x}{4} = \frac{y}{4} \rightarrow x = y$

b) La altura que parte de C, h_C , es perpendicular a \overrightarrow{AB} y pasa por C.

$$\overrightarrow{AB} = (2, -2) - (4, 1) = (-2, 3)$$

Vector perpendicular a \overrightarrow{AB} : $\overrightarrow{d}' = (3, 2)$

Ecuación de h_C: $\frac{x+2}{3} = \frac{y-2}{2}$

c) La mediana relativa al lado AC, n_b , es perpendicular a \overrightarrow{AC} y pasa por M_{AC} .

$$\overrightarrow{AC} = (-2, 2) - (4, 1) = (-6, 1)$$

$$M_{AC} = \left(\frac{-2+4}{2}, \frac{2+1}{2}\right) = \left(1, \frac{3}{2}\right)$$

Vector perpendicular a \overrightarrow{AC} : $\overrightarrow{d}' = (1, 6)$

Ecuación de n_b : $\frac{x-1}{1} = \frac{y - \frac{3}{2}}{6}$

5. Rectas paralelas a una dada a una distancia determinada

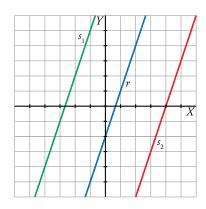
Hazlo tú. Halla las ecuaciones de las rectas que distan $\sqrt{10}$ unidades de r: y = 3x - 2.

$$s_k \colon 3x - y + k = 0$$

Punto de r: P = (0, -2)

$$dist(P, s_k) = \sqrt{10} \ \to \frac{\left| \ 3 \cdot 0 - (-2) + k \right|}{\sqrt{9 + 1}} = \sqrt{10} \ \to \left| \ k + 2 \right| = 10 \ \to \begin{cases} k + 2 = 10 \ \to k = 8 \\ k + 2 = -10 \ \to k = -12 \end{cases}$$

Las rectas buscadas son s_1 : 3x - y + 8 = 0 y s_2 : 3x - y - 12 = 0.



6. Distancias y área en un triángulo

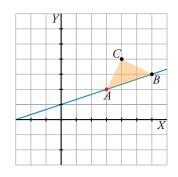
Hazlo tú. Resuelve este mismo ejercicio para r: x-3y+3=0, B(6,3) y C(4,4).

a) Sustituimos las coordenadas de los vértices B y C en la ecuación de r. Obtenemos que $B \in r$ y $C \notin r$. Por tanto, el lado desigual es AB: $dist(A, C) = dist(B, C) \neq dist(A, B)$.

Como $A \in r$, sus coordenadas deben cumplir su ecuación, es decir, A = (3y - 3, y).

$$dist(A,\ C) = dist(B,\ C) \ \rightarrow \ \sqrt{(4-(3y-3))^2+(4-y)^2} = \sqrt{4+1} \ \rightarrow \ 10y^2-50y+65=5 \ \rightarrow \ y_1=3,\ y_2=2$$

Obtenemos dos soluciones, A(3, 2) y A'(6, 3), pero A' = B no es válida.



b) Tomando como base *AB*, Área = $\frac{1}{2}$ base · altura = $\frac{1}{2}$ · *dist* (*A*, *B*) · *dist* (*C*, *r*)

$$dist(A, B) = \sqrt{(3-6)^2 + (2-3)^2} = \sqrt{10} u$$

$$dist(C, r) = \frac{|4-12+3|}{\sqrt{10}} = \frac{\sqrt{10}}{2} u$$

Área =
$$\frac{1}{2}\sqrt{10}\frac{\sqrt{10}}{2} = \frac{5}{2} = 2,5 \text{ u}^2$$

Página 206

8. Recta que pasa por un punto y forma un ángulo determinado con otra recta dada

Hazlo tú. Halla la ecuación de una recta que pase por el origen de coordenadas y forme un ángulo de 60° con la recta r: y = x + 3.

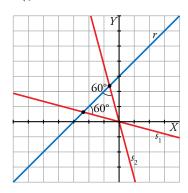
Pendiente de $r: m_r = 1$

Pendiente de $s: m_s$

$$tg\ 60^{\circ} = \left| \frac{1 - m_{s}}{1 + m_{s}} \right| \rightarrow \sqrt{3} = \left| \frac{1 - m_{s}}{1 + m_{s}} \right| \rightarrow \begin{cases} \frac{1 - m_{s}}{1 + m_{s}} = \sqrt{3} \rightarrow m_{s} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}} \\ \frac{1 - m_{s}}{1 + m_{s}} = -\sqrt{3} \rightarrow m_{s} = \frac{1 + \sqrt{3}}{1 - \sqrt{3}} \end{cases}$$

Como pasa por O = (0, 0):

$$s_1: y = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}x; \quad s_2: y = \frac{1 + \sqrt{3}}{1 - \sqrt{3}}x$$



Página 207

9. Recta simétrica a otra respecto a una tercera recta dada

Hazlo tú. Halla la recta t, simétrica de la recta r: -2x + 3y + 2 = 0 respecto de la recta s: -5x + y + 18 = 0.

Calculamos A, el punto de intersección de r y t:

$$\begin{cases} -2x + 3y + 2 = 0 \\ -5x + y + 18 = 0 \end{cases} \rightarrow A = (4, 2)$$

Ahora, tomamos un punto P de r: P = (1, 0)

Calculamos la recta a perpendicular a s que pasa por P = (1, 0):

$$\vec{d}_s = (-1, -5) \rightarrow \vec{d}_a = (5, -1)$$

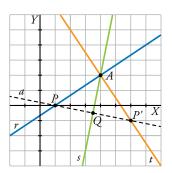
a:
$$\frac{x-1}{5} = \frac{y}{-1} \rightarrow -x + 1 = 5y \rightarrow -x - 5y + 1 = 0$$

Determinamos Q, punto de corte de a y s:

$$\begin{cases} -x - 5y + 1 = 0 \\ -5x + y + 18 = 0 \end{cases} \rightarrow Q = \left(\frac{7}{2}, -\frac{1}{2}\right)$$

Calculamos P' = (x, y), simétrico de P respecto a Q:

$$\left(\frac{7}{2}, -\frac{1}{2}\right) = \left(\frac{x+1}{2}, \frac{y}{2}\right) \rightarrow P' = (6, -1)$$



La recta t pasa por A = (4, 2) y por P'.

$$\overrightarrow{AP'} = (6, -1) - (4, 2) = (2, 3)$$

$$t: \frac{x-4}{2} = \frac{y-2}{3}$$

10. Cálculo del circuncentro de un triángulo

Hazlo tú. Halla el circuncentro del triángulo de vértices A(3, 1), B(4, 2) y C(9, -3).

Calculamos la mediatriz m_c del lado AB, que pasa por el punto medio de AB:

$$\overrightarrow{AB} = (1, 1) \rightarrow \overrightarrow{d_{m_c}} = (1, -1)$$

$$M_{AB} = \left(\frac{3+4}{2}, \frac{1+2}{2}\right) = \left(\frac{7}{2}, \frac{3}{2}\right)$$

$$m_c: \frac{x - \frac{7}{2}}{1} = \frac{y - \frac{3}{2}}{-1} \rightarrow -x + \frac{7}{2} = y - \frac{3}{2} \rightarrow -x - y + 5 = 0$$

Calculamos m_b , mediatriz del lado AC que pasa por el punto medio de AC:

$$\overrightarrow{AC} = (6, -4) \rightarrow \overrightarrow{d_{m_b}} = (4, 6)$$

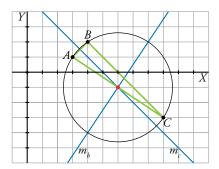
$$M_{AC} = \left(\frac{3+9}{2}, \frac{1-3}{2}\right) = (6, -1)$$

$$m_b : \frac{x-6}{4} = \frac{y+1}{6} \rightarrow 6x - 36 = 4y + 4 \rightarrow 6x - 4y - 40 = 0$$

Hallamos el circuncentro calculando el punto de corte de $\ m_c \ y \ m_b$:

$$\begin{cases} -x - y + 5 = 0 \\ 6x - 4y - 40 = 0 \end{cases} \rightarrow x = 6, \ y = -1$$

El circuncentro es el punto (6, -1).

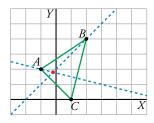


Ejercicios y problemas guiados

Página 208

1. Cálculo del ortocentro de un triángulo

Hallar el ortocentro del triángulo de vértices A(-1, 2), B(2, 4) γ C(1, 0).



a)
$$\overrightarrow{BC} = (-1, -4)$$

Altura h_A : Pasa por A = (-1, 2) y tiene vector de dirección $\overrightarrow{d_{h_A}} = (-4, 1)$.

$$h_A$$
: $\frac{x+1}{-4} = \frac{y-2}{1} \rightarrow x+1 = -4y+8 \rightarrow x+4y-7=0$

b)
$$\overrightarrow{AC} = (2, -2)$$

Altura h_B : Pasa por B=(2,4) y tiene vector de dirección $\overrightarrow{d_{h_B}}=(2,2)$.

$$h_B$$
: $\frac{x-2}{2} = \frac{y-4}{2} \rightarrow 2x-4 = 2y-8 \rightarrow 2x-2y+4=0$

El ortocentro es el punto de corte de h_A y h_B :

$$\begin{cases} x + 4y - 7 = 0 \\ 2x - 2y + 4 = 0 \end{cases} \rightarrow x = -\frac{1}{5}, y = \frac{9}{5}$$

Ortocentro: $\left(-\frac{1}{5}, \frac{9}{5}\right)$

2. Determinación de un punto que equidista de dos rectas

Determinar un punto P del eje de ordenadas que equidiste de estas rectas:

$$r: 6x - 8y + 1 = 0$$

$$s: 4x + 3y - 3 = 0$$

a)
$$P \in OY \rightarrow P = (0, y)$$

b)
$$P = (0, y)$$

$$dist(P, r) = dist(P, s) \rightarrow \frac{|-8y+1|}{\sqrt{36+64}} = \frac{|3y-3|}{\sqrt{16+9}} \rightarrow \frac{|-8y+1|}{10} = \frac{|3y-3|}{5} \rightarrow$$

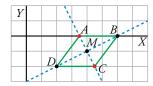
$$\rightarrow \begin{cases}
\frac{-8y+1}{10} = \frac{3y-3}{5} \to y = \frac{1}{2} \\
\frac{-8y+1}{10} = -\frac{3y-3}{5} \to y = -\frac{5}{2}
\end{cases}$$

Los puntos solución son:

$$P = \left(0, \frac{1}{2}\right), P' = \left(0, -\frac{5}{2}\right)$$

3. Vértices de un rombo

Un rombo ABCD tiene el vértice A en el eje de abscisas. Otros dos vértices opuestos son B(6, 0) y D(2, -2). Hallar A γ C.



$$\overrightarrow{BD} = (-4, -2)$$

$$M_{BD} = \left(\frac{6+2}{2}, \frac{0-2}{2}\right) = (4, -1)$$

d = diagonal AC perpendicular a BD

d pasa por M_{BD} y tiene vector director (-2, 4).

$$d: \frac{x-4}{-2} = \frac{y+1}{4} \rightarrow 4x - 16 = -2y - 2 \rightarrow 4x + 2y - 14 = 0$$

A es la intersección de d y el eje OX:

$$\begin{cases} 4x + 2y - 14 = 0 \\ y = 0 \end{cases} \rightarrow x = \frac{7}{2}, y = 0 \rightarrow A = \left(\frac{7}{2}, 0\right)$$

C = (x, y) es el simétrico de A respecto a M_{BD} :

$$(4,-1) = \left(\frac{x + \frac{7}{2}}{2}, \frac{y}{2}\right) \rightarrow C = \left(\frac{9}{2}, -2\right)$$

4. Vértices de un triángulo conocidas algunas rectas notables

En un triángulo ABC conocemos el vértice A(3,5), la ecuación de la mediatriz relativa al lado AB, m_c : x-2y+2=0 y la altura que pasa por B, h_B : 3x-y-14=0. Además, sabemos que BC está sobre la altura h_B .

Calcular los vértices B y C.

a) El lado AC pasa por A = (3, 5) y es perpendicular a h_B .

Vector de dirección del lado AC: $\vec{d} = (3, -1)$

Ecuación del lado AC:
$$\frac{x-3}{3} = \frac{y-5}{-1} \rightarrow -x + 3 = 3y - 15 \rightarrow -x - 3y + 18 = 0$$

b)
$$\begin{cases} x - 2y + 2 = 0 \\ -x - 3y + 18 = 0 \end{cases} \rightarrow x = 6, y = 4 \rightarrow C = (6, 4)$$

c) El lado AB pasa por A = (3, 5) y es perpendicular a m_C .

Vector de dirección del lado AB: $\vec{d} = (1, -2)$

Ecuación de lado *AB*:
$$\frac{x-3}{1} = \frac{y-5}{-2} \rightarrow -2x + 6 = y-5 \rightarrow -2x - y + 11 = 0$$

d)
$$\begin{cases} 3x - y - 14 = 0 \\ -2x - y + 11 = 0 \end{cases} \rightarrow x = 5, y = 1 \rightarrow B = (5, 1)$$

Ejercicios y problemas propuestos

Página 209

Para practicar

Coordenadas de puntos

- 1 Halla las coordenadas de \overrightarrow{AB} y \overrightarrow{BA} , siendo:
 - a) A(0, 0), B(-1, 2)
 - b) A(2, 3), B(-2, 5)

a)
$$\overrightarrow{AB} = (-1, 2) - (0, 0) = (-1, 2)$$

$$\overrightarrow{BA} = (0, 0) - (-1, 2) = (1, -2)$$

b)
$$\overrightarrow{AB} = (-2, 5) - (2, 3) = (-4, 2)$$

$$\overrightarrow{BA} = (2, 3) - (-2, 5) = (4, -2)$$

2 Determina si los puntos A(5, -2), B(3, -2) y C(-5, -2) están alineados.

$$\overrightarrow{AB} = (3, -2) - (5, -2) = (-2, 0)$$

$$\overrightarrow{BC} = (-5, -2) - (3, -2) = (-8, 0)$$

Las coordenadas de \overrightarrow{AB} y \overrightarrow{BC} son proporcionales, por tanto, A, B y C están alineados.

3 Determina k para que los puntos A(-3, 5), B(2, 1) y C(6, k) estén alineados.

Debe ocurrir que \overrightarrow{AB} y \overrightarrow{BC} sean proporcionales.

$$\overrightarrow{AB} = (5, -4)$$
 $\overrightarrow{BC} = (4, k-1)$
 $\rightarrow \frac{5}{4} = \frac{-4}{k-1} \rightarrow 5k-5 = -16 \rightarrow k = \frac{-11}{5}$

- 4 Sean A(8, -2) y B(-4, 2) dos puntos. Calcula:
 - a) M, punto medio de A y B.
 - b) S, simétrico de A respecto a B.
 - c) P, tal que A sea el punto medio del segmento BP.

a)
$$M = \left(\frac{8-4}{2}, \frac{-2+2}{2}\right) = (2, 0)$$

b) B es el punto medio entre A y S = (x, y)

$$(-4, 2) = \left(\frac{x+8}{2}, \frac{y-2}{2}\right) \to \begin{cases} -4 = \frac{x+8}{2} \to x = -16\\ 2 = \frac{y-2}{2} \to y = 6 \end{cases}$$

$$S = (-16, 6)$$

c) P es el simétrico de B respecto de $A \rightarrow A$ es el punto medio entre B y P.

$$P = (x, y)$$

$$(8, -2) = \left(\frac{x-4}{2}, \frac{y+2}{2}\right) \to \begin{cases} 8 = \frac{x-4}{2} \to x = 20\\ -2 = \frac{y+2}{2} \to y = -6 \end{cases}$$

$$P = (20, -6)$$

5 Da las coordenadas del punto P que divide al segmento de extremos A(3,4) y B(0,-2) en dos partes tales que $\overrightarrow{BP} = 2\overrightarrow{PA}$.

Sea
$$P(x, y)$$
.

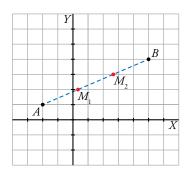
Sustituimos en la condición que nos imponen:

$$\overrightarrow{BP} = 2\overrightarrow{PA} \rightarrow (x - 0, y - (-2)) = 2(3 - x, 4 - y) \rightarrow$$

$$\rightarrow \begin{cases} x = 2(3 - x) \\ y + 2 = 2(4 - y) \end{cases} \rightarrow \begin{cases} x = 6 - 2x \\ y + 2 = 8 - 2y \end{cases} \rightarrow \begin{cases} 3x = 6 \\ 3y = 6 \end{cases} \rightarrow \begin{cases} x = 2 \\ y = 2 \end{cases} \rightarrow P(2, 2)$$

6 Determina los puntos que dividen al segmento AB en tres partes iguales, siendo A(-2, 1) y B(5, 4).

Buscamos las coordenadas de los puntos M_1 , M_2 de la figura.



$$\overrightarrow{AB} = (7, 3)$$

$$M_1 = (x, y)$$

$$\overrightarrow{AB} = 3\overrightarrow{AM_1} \to (7,3) = 3(x+2, y-1) \to \begin{cases} 7 = 3x+6 \to x = \frac{1}{3} \\ 3 = 3y-3 \to y = 2 \end{cases} \to M_1 = \left(\frac{1}{3}, 2\right)$$

$$M_2 = (x, y)$$

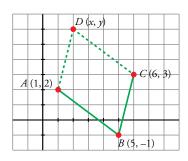
$$\overrightarrow{AM_2} = 2\overrightarrow{AM_1} \rightarrow (x+2, y-1) = 2\left(\frac{1}{3} + 2, 2 - 1\right) \rightarrow \begin{cases} x+2 = \frac{14}{3} \rightarrow x = \frac{8}{3} \\ y-1 = 2 \rightarrow y = 3 \end{cases} \rightarrow M_2 = \left(\frac{8}{3}, 3\right)$$

7 Halla las coordenadas del vértice D del paralelogramo ABCD, sabiendo que A(1,2), B(5,-1) y C(6,3).

Sea
$$D(x, y)$$
.

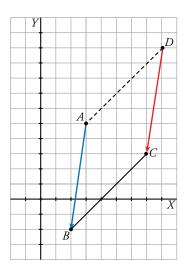
Debe cumplirse:
$$\overrightarrow{AB} = \overrightarrow{DC}$$

$$(5-1,-1-2) = (6-x, 3-y) \rightarrow \begin{cases} 4=6-x \\ -3=3-y \end{cases} \rightarrow \begin{cases} x=2 \\ y=6 \end{cases} \rightarrow D(2,6)$$



- 8 Conocemos tres vértices de un rombo ABCD, A(3,5), B(2,-2) y C(7,3). Determina el vértice
- * Las diagonales de un rombo se cortan en sus puntos medios y son perpendiculares.

En un rombo, $\overrightarrow{AB} = \overrightarrow{DC}$.



$$\overrightarrow{AB} = (-1, -7)$$

$$D = (x, y)$$

$$D = (x, y)$$

$$(-1, -7) = (7 - x, 3 - y) \rightarrow \begin{cases} -1 = 7 - x \rightarrow x = 8 \\ -7 = 3 - y \rightarrow y = 10 \end{cases} \rightarrow D = (8, 10)$$

Ecuaciones de rectas

9 Escribe las ecuaciones vectoriales y paramétricas de la recta que pasa por A y tiene dirección paralela al vector d.

a)
$$A(-3,7)$$
, $\vec{d}(4,-1)$

b)
$$A(-1, 0)$$
, $\vec{d}(0, 2)$

Obtén 2 puntos más para cada recta.

a) Ecuación vectorial: (x, y) = (-3, 7) + k(4, -1)

Ecuaciones paramétricas:
$$\begin{cases} x = -3 + 4k \\ y = 7 - k \end{cases}$$

Dando valores al parámetro k, obtenemos puntos: (1, 6), (5, 5)

b) Ecuación vectorial: (x, y) = (-1, 0) + k(0, 2)

Ecuaciones paramétricas:
$$\begin{cases} x = -1 + 0 \cdot k \\ y = 2k \end{cases}$$

10 Escribe la ecuación de la recta que pasa por $P ext{ y } Q$ de todas las formas posibles.

- a) P(6,-2) y Q(0,5) b) P(3,2) y Q(3,6)

- c) P(0, 0) y Q(8, 0) d) P(0, 0) y Q(0, -2)
- a) $\overrightarrow{PQ} = (-6, 7)$

 - Ecuación vectorial: (x, y) = (6, -2) + t(-6, 7)Ecuaciones paramétricas: $\begin{cases} x = 6 6t \\ y = -2 + 7t \end{cases}$
 - Ecuación continua: $\frac{x-6}{-6} = \frac{y+2}{7}$
 - Ecuación implícita: 7x + 6y 30 = 0
 - Ecuación explícita: $y = -\frac{7}{6}x + 5$
- b) $\overrightarrow{PQ} = (0, 4)$
 - Ecuación vectorial: (x, y) = (3, 2) + t(0, 4)
 - Ecuaciones paramétricas: $\begin{cases} x = 3 \\ y = 2 + 4t \end{cases}$
 - Ecuación continua: $\frac{x-3}{0} = \frac{y-2}{4}$
 - Ecuación implícita: x 3 = 0
- c) $\overrightarrow{PQ} = (8, 0)$
 - Ecuación vectorial: (x, y) = (0, 0) + t(8, 0)
 - Ecuaciones paramétricas: $\begin{cases} x = 8t \\ y = 0 \end{cases}$
 - Ecuación continua: $\frac{x-0}{8} = \frac{y-0}{0}$
 - Ecuación implícita y explícita: y = 0
- d) $\overrightarrow{PQ} = (0, -2)$
 - Ecuación vectorial: (x, y) = (0, 0) + t(0, -2)
 - Ecuaciones paramétricas: $\begin{cases} x = 0 \\ y = -2t \end{cases}$
 - Ecuación continua: $\frac{x}{0} = \frac{y}{-2}$
 - Ecuación implícita: x = 0
 - Ecuación explícita no tiene.

11 Escribe las ecuaciones paramétricas e implícitas de los ejes de coordenadas.

- Eje *OX*
- Ecuaciones paramétricas: $\begin{cases} x = \lambda \\ y = 0 \end{cases}$ Ecuación implícita: y = 0
- Eje *OY*
 - Ecuaciones paramétricas: $\begin{cases} x = 0 \\ y = \lambda \end{cases}$ Ecuación implícita: x = 0

12 Determina un vector normal y la ecuación implícita de cada una de las siguientes rectas:

a)
$$r: \frac{x+1}{-2} = y-1$$

b) s:
$$\begin{cases} x = -t + 1 \\ y = 5t - 2 \end{cases}$$

a)
$$\vec{n} = (1, 2)$$

Ecuación implícita: x + 2y + k = 0

Como pasa por P = (-1, 0), sustituimos sus coordenadas en la ecuación de la recta para calcular k.

$$-1 + 0 + k = 0 \rightarrow k = 1$$

$$r: x + 2y + 1 = 0$$

b)
$$\vec{n} = (5, 1)$$

Ecuación implícita: 5x + y + k = 0

Como pasa por P = (-1, 2), sustituimos sus coordenadas en la ecuación de la recta para calcular k.

$$5(-1) + 2 + k = 0 \rightarrow k = 3$$

$$s: 5x + y + 3 = 0$$

13 Obtén, para cada una de las siguientes rectas, un vector dirección, un vector normal y su pendiente:

a)
$$r_1$$
:
$$\begin{cases} x = 2t - 1 \\ y = 5t \end{cases}$$

a)
$$r_1$$
:
$$\begin{cases} x = 2t - 1 \\ y = 5t \end{cases}$$
 b) r_2 : $\frac{x+3}{2} = \frac{1-y}{4}$ c) r_3 : $x+3=0$

c)
$$r_3$$
: $x + 3 = 0$

d)
$$r_4$$
: $y = \frac{1}{3}x + \frac{2}{3}$

 \vec{d} : vector de dirección; \vec{n} : vector normal; m = pendiente.

a)
$$\vec{d} = (2, 5); \vec{n} = (-5, 2); m = \frac{5}{2}$$

b)
$$\vec{d} = (2, 4); \vec{n} = (-4, 2); m = 2$$

c)
$$\vec{d} = (0, 1)$$
; $\vec{n} = (1, 0)$; m no se puede calcular porque es una recta vertical.

d)
$$\vec{d} = (3, 2); \vec{n} = (2, -3); m = \frac{2}{3}$$

14 Determina un punto y un vector dirección de cada recta. Utilízalos para dar sus ecuaciones continuas y paramétricas.

a)
$$3x - 2y + 1 = 0$$

b)
$$y = 2(x-1) + 7$$
 c) $x-3 = 0$

c)
$$x - 3 = 0$$

$$d) y = \frac{2}{3}x + 1$$

d: vector de dirección

a)
$$\vec{d} = (2, 3); P = \left(0, \frac{1}{2}\right)$$

b)
$$\vec{d} = (1, 2); P = (0, 5)$$

Ecuaciones paramétricas: $\begin{cases} x = 2\lambda \\ y = \frac{1}{2} + 3\lambda \end{cases}$

Ecuaciones paramétricas: $\begin{cases} x = \lambda \\ y = 5 + 2\lambda \end{cases}$

Ecuación continua: $\frac{x}{2} = \frac{y - \frac{1}{2}}{3}$

Ecuación continua: $\frac{x}{1} = \frac{y-5}{2}$

c)
$$\vec{d} = (0, 1); P = (3, 0)$$

d)
$$\vec{d} = (3, 2); P = (0, 1)$$

Ecuaciones paramétricas: $\begin{cases} x = 3 \\ y = \lambda \end{cases}$

Ecuaciones paramétricas:
$$\begin{cases} x = 3\lambda \\ y = 1 + 2\lambda \end{cases}$$

Ecuación continua: $\frac{x-3}{0} = \frac{y}{1}$

Ecuación continua:
$$\frac{x}{3} = \frac{y-1}{2}$$

15 Comprueba si el punto P(5, -7) pertenece a alguna de las siguientes rectas:

a)
$$r: \begin{cases} x = 5 \\ y = 13 - 2t \end{cases}$$

a)
$$r:\begin{cases} x=5\\ y=13-2t \end{cases}$$
 b) $s:\frac{x-1}{2}=\frac{y-3}{5}$

a) Sustituímos las coordenadas de P en la ecuación de la recta:

$$\begin{cases} x = 5 \\ y = 13 - 2t \end{cases} \to \begin{cases} 5 = 5 \\ -7 = 13 - 2t \end{cases} \to t = 10$$

Hay solución, luego $P \in r$.

b)
$$\frac{x-1}{2} = \frac{y-3}{5} \to \frac{5-1}{2} = \frac{-7-3}{5} \to \frac{4}{2} \neq \frac{-10}{5}$$
 luego $P \notin s$.

16 Halla el valor de k para que la recta x + ky - 7 = 0 contenga al punto A(5, -2).

$$(5,-2) \rightarrow 5 + k(-2) - 7 = 0 \rightarrow -2k = 2 \rightarrow k = -1$$

Haz de rectas

17 Consideramos el haz de rectas de centro (3, -2).

- a) Escribe la ecuación de este haz de rectas.
- b) ¿Qué recta de este haz pasa por el punto (-1, 5)?
- c) ¿Cuál de las rectas del haz es paralela a 2x + y = 0?
- d) Halla la recta del haz cuya distancia al origen es igual a 3.

a)
$$a(x-3) + b(y+2) = 0$$
; o bien $y = -2 + m(x-3)$

b) Si pasa por (-1, 5), entonces, sustituyendo en y = -2 + m(x - 3), obtenemos:

$$5 = -2 + m(-1 - 3) \rightarrow 7 = -4m \rightarrow m = -\frac{7}{4}$$
; es decir:

$$y = -2 - \frac{7}{4}(x - 3) \rightarrow 4y = -8 - 7x + 21 \rightarrow 7x + 4y - 13 = 0$$

c) Si es paralela a 2x + y = 0 tendrá pendiente -2.

Por tanto, será:

$$y = -2 - 2(x - 3) \rightarrow y = -2 - 2x + 6 \rightarrow 2x + y - 4 = 0$$

d) Una recta del haz tiene por ecuación:

$$y = -2 + m(x - 3)$$
 $\rightarrow y = -2 + mx - 3m$ $\rightarrow mx - y - 3m - 2 = 0$

Su distancia al origen ha de ser igual a 3:

$$\frac{|-3m-2|}{\sqrt{m^2+1}} = 3$$
; es decir:

 $|-3m-2| = 3\sqrt{m^2+1}$. Elevamos al cuadrado y operamos:

$$9m^2 + 12m + 4 = 9(m^2 + 1)$$

$$9m^2 + 12m + 4 = 9m^2 + 9$$

$$12m = 5 \rightarrow m = \frac{5}{12}$$

Por tanto, será:

$$\frac{5}{12}x - y - \frac{5}{12} - 2 = 0 \rightarrow 5x - 12y - 39 = 0$$

18 Determina el centro del haz de rectas de ecuación 3kx + 2y - 3k + 4 = 0.

Llamamos (x_0, y_0) al centro del haz. Vamos a escribir la ecuación que nos dan de la forma:

$$a(x - x_0) + b(y - y_0) = 0$$

$$3kx + 2y - 3k + 4 = 0 \rightarrow 3k(x - x_0) + 2(y - y_0) = 0$$

$$3kx - 3kx_0 + 2y - 2y_0 = 0$$

$$3kx + 2y - 3kx_0 - 2y_0 = 0$$

Han de ser iguales las dos ecuaciones. Por tanto:

$$-3kx_0 = -3k \rightarrow x_0 = 1$$

$$-2y_0 = 4 \rightarrow y_0 = -2$$

El centro del haz es el punto (1, -2).

19 Las rectas r: y = 3 y s: y = 2x - 1 forman parte del mismo haz de rectas. ¿Qué recta de dicho haz tiene pendiente -2?

Si r: y = 3 y s: y = 2x - 1 están en el mismo haz de rectas, el centro de dicho haz es el punto de corte de estas rectas: P(2, 3).

Buscamos la recta que pasa por P(2, 3) y tiene pendiente m = -2:

$$y = -2(x-2) + 3 \rightarrow y = -2x + 7$$

Paralelismo y perpendicularidad

20 El vector dirección de r es $\vec{d}(2, -5)$. Halla, en cada caso, el vector dirección y la pendiente de:

a) Una recta paralela a r.

- b) Una recta perpendicular a r.
- a) Tiene el mismo vector de dirección $\vec{d} = (2, -5) \rightarrow m = \frac{-5}{2}$
- b) Tiene vector de dirección $\vec{d} = (5, 2) \rightarrow m = \frac{2}{5}$

21 Dada la recta $r: \begin{cases} x=1-5t \\ y=2+t \end{cases}$, obtén en forma explícita las siguientes rectas:

- a) Paralela a r que pasa por A(-1, -3).
- b) Perpendicular a r que pasa por B(-2, 5).

$$r: \begin{cases} x = 1 - 5t \\ y = 2 + t \end{cases} \rightarrow \overrightarrow{\mathbf{v}}_r = (-5, 1)$$

a)
$$\vec{v}_s = (-5, 1), A(-1, -3) \rightarrow s: y = -\frac{1}{5}(x+1) - 3 \rightarrow s: y = -\frac{1}{5}x - \frac{16}{5}$$

b)
$$\vec{v}_s = (1, 5), \ B(-2, 5) \rightarrow s: y = 5(x + 2) + 5 \rightarrow s: y = 5x + 15$$

22 De una cierta recta r conocemos su pendiente $m = \frac{2}{3}$. Halla la recta s en cada caso:

- a) s es paralela a r y pasa por (0, 0).
- b) s es perpendicular a r y pasa por (1, 2).
- a) Al ser paralela, tiene la misma pendiente. Además, pasa por (0, 0). Por tanto, $s: y = \frac{2}{3}x$.
- b) Al ser perpendicular, su pendiente es $-\frac{1}{m} = \frac{-3}{2}$. Por tanto, $y = \frac{-3}{2}(x-1) + 2 \rightarrow y = \frac{-3}{2}x + \frac{7}{2}$.

Página 210

23 Halla una recta que pase por el punto P(0, 1) y sea perpendicular a la recta $\frac{x-1}{4} = \frac{1-y}{3}$.

r tiene vector de dirección $\vec{d} = (-3, 4)$ y pasa por P(0, 1).

$$r: \frac{x}{-3} = \frac{y-1}{4}$$

- 24 Halla, en cada caso, la ecuación de la recta que pasa por el punto P(1, -3) y es:
 - a) Paralela a la recta 2x 3y + 5 = 0.
 - b) Perpendicular a la recta x + y 3 = 0.
 - c) Paralela a la recta 2y 3 = 0.
 - d) Perpendicular a la recta x + 5 = 0.
 - a) r tiene vector de dirección $\vec{d} = (3, 2)$ y pasa por $P(1, -3) \rightarrow r$: $\frac{x-1}{3} = \frac{y+3}{2}$
 - b) r tiene vector de dirección $\vec{d} = (1, 1)$ y pasa por $P(1, -3) \rightarrow r : \frac{x-1}{1} = \frac{y+3}{1}$
 - c) Es paralela al eje OY y pasa por $P(1, -3) \rightarrow r$: y = -3
 - d) Es paralela al eje OX y pasa por $P(1, -3) \rightarrow r: x = 1$
- 25 El vector normal de la recta r es n(2, -3). Obtén, en cada caso, la ecuación de la recta s.
 - a) s es paralela a r y contiene al punto P(2, -3).
 - b) s es perpendicular a r y pasa por Q(0, 1).
 - a) s tiene vector de dirección $\vec{d} = (3, 2)$ y pasa por P(2, -3).

$$s: \frac{x-2}{3} = \frac{y+3}{2}$$

b) s tiene vector de dirección $\vec{d} = (2, -3)$ y pasa por Q(0, 1).

$$s: \frac{x}{2} = \frac{y-1}{-3}$$

- **26** Escribe las ecuaciones de las siguientes rectas:
 - a) r_1 , paralela al eje de abscisas que pasa por A(-1, -2).
 - b) r_2 , perpendicular al eje OX que contiene a B(1, 0).
 - c) r_3 , paralela al eje de ordenadas que pasa por C(3, 5).
 - d) r_4 , perpendicular al eje OY que contiene a D(-1,7).
 - a) r_1 : y = -2
 - b) r_2 : x = 1
 - c) r_3 : x = 3
 - d) r_4 : y = 7
- **27** Halla la ecuación de la paralela a 2x 3y = 0 cuya ordenada en el origen es -2.

$$r \colon 2x - 3y = 0$$

 $s /\!\!/ r \to \text{ la pendiente de } s \text{ ha de ser igual a la de } r$ $P(0,-2) \in s \qquad \qquad \} \to \begin{cases} m_s = m_r = \frac{2}{3} \\ P(0,-2) \in s \end{cases}$

Ecuación explícita: $y = \frac{2}{3}x - 2$

Ecuación implícita: 2x - 3y - 6 = 0

28 Dados los puntos A(0, 1) y B(4, -3) halla la ecuación implícita de la recta perpendicular al segmento AB que pasa por su punto medio.

$$\overrightarrow{AB} = (4, -3) - (0, 1) = (-4, 4)$$

$$M = \left(\frac{4}{2}, \frac{-2}{2}\right) = (2, -1)$$

s tiene vector de dirección $\vec{d} = (4, 4)$ y pasa por M = (2, -1).

$$s: \frac{x-2}{4} = \frac{y+1}{4} \rightarrow x-2 = y+1 \rightarrow s: x-y-3 = 0$$

29 Dada la recta 4x + 3y - 6 = 0, escribe la ecuación de la recta perpendicular a ella en el punto de corte con el eje de ordenadas.

Punto de corte con el eje de ordenadas P:

$$\begin{cases} 4x + 3y - 6 = 0 \\ x = 0 \end{cases} \rightarrow x = 0, y = 2$$

s tiene vector de dirección $\vec{d} = (4, 3)$ y pasa por P = (0, 2).

$$s: \frac{x}{4} = \frac{y-2}{3}$$

- 30 Determina, en cada caso, una recta que pase por el punto P(-2, -3) y sea:
 - a) Paralela a la bisectriz del primer cuadrante.
 - b) Perpendicular a la bisectriz del segundo cuadrante.
 - a) Bisectriz del primer cuadrante: y = x

s tiene vector de dirección $\vec{d} = (1, 1)$ y pasa por P = (-2, -3).

$$s: \frac{x+2}{1} = \frac{y+3}{1} \rightarrow x+2 = y+3$$

b) Bisectriz del segundo cuadrante: y = -x

s tiene vector de dirección $\vec{d} = (1, 1)$ y pasa por P = (-2, 3).

$$s: \frac{x+2}{1} = \frac{y+3}{1} \rightarrow x+2 = y+3$$

Es la misma recta que la anterior.

31 De un triángulo conocemos el vértice A(1,3) y la recta r: 2x - 3y + 6 = 0 que contiene al lado BC. Halla la altura relativa al vértice A.

 h_A es perpendicular a r y pasa por A = (1, 3).

 h_A tiene vector de dirección $\vec{d} = (2, -3)$ y pasa por A = (1, 3).

$$h_A$$
: $\frac{x-1}{2} = \frac{y-3}{-3}$

- **52** Calcula las ecuaciones de las mediatrices del triángulo de vértices A(-1, -2), B(3, 2) y C(3, 4).
 - a) m_a es perpendicular a BC y pasa por M_{BC} .

BC tiene vector de dirección \overrightarrow{BC} = (0, 2).

$$M_{BC} = \left(\frac{3+3}{2}, \frac{2+4}{2}\right) = (3, 3)$$

 m_a tiene vector de dirección \vec{d} = (2, 0) y pasa por M_{BC} = (3, 3).

$$m_a$$
: $y = 3$

b) m_b es perpendicular a AC y pasa por M_{AC} .

AC tiene vector de dirección \overrightarrow{AC} = (4, 6).

$$M_{AC} = \left(\frac{-1+3}{2}, \frac{-2+4}{2}\right) = (1, 1)$$

 m_b tiene vector de dirección $\vec{\mathbf{d}} = (6, -4)$ y pasa por $M_{BC} = (1, 1)$.

$$m_b: \frac{x-1}{6} = \frac{y-1}{-4}$$

c) m_c es perpendicular a AB y pasa por M_{AB} .

AB tiene vector de dirección $\overrightarrow{AB} = (4, 4) = 4(1, 1)$.

$$M_{AB} = \left(\frac{-1+3}{2}, \frac{-2+2}{2}\right) = (1, 0)$$

 m_c tiene vector de dirección $\vec{\mathbf{d}} = (1, -1)$ y pasa por $M_{AB} = (1, 0)$.

$$m_c: \frac{x-1}{1} = \frac{y}{-1} \rightarrow -x + 1 = y$$

- **33** Halla, en cada caso, el valor de k para que la recta r: y = kx + 1 sea:
 - a) Paralela al eje OX. b) Perpendicular a la recta 2x + 3y + 7 = 0.

Pendiente de r: m = k

- a) Pendiente del eje OX: m' = 0, luego $m = m' = 0 \rightarrow k = 0$
- b) Pendiente de 2x + 3y + 7 = 0: $m' = -\frac{2}{3}$, luego $m = -\frac{1}{m'} = \frac{3}{2} \rightarrow k = \frac{3}{2}$
- **34** Halla el punto simétrico de P(1, 1) respecto a la recta x 2y 4 = 0.
 - * Mira el problema resuelto número 2.

Llamamos r a la recta: x - 2y - 4 = 0.

s: Perpendicular a r que pasa por P = (1, 1)

s tiene vector de dirección $\vec{d} = (1, -2)$

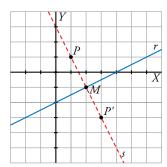
s:
$$\frac{x-1}{1} = \frac{y-1}{-2} \rightarrow -2x + 2 = y - 1 \rightarrow -2x - y + 3 = 0$$

M = punto de corte de las rectas

$$\begin{cases} -2x - y + 3 = 0 \\ x - 2y - 4 = 0 \end{cases} \rightarrow x = 2, y = -1 \rightarrow M = (2, -1)$$

M es el punto medio entre P y P' = (x, y), su simétrico respecto de r.

$$(2,-1) = \left(\frac{x+1}{2}, \frac{y+1}{2}\right) \to \begin{cases} 2 = \frac{x+1}{2} \to x = 3\\ -1 = \frac{y+1}{2} \to y = -2 \end{cases} \to P' = (3,-3)$$



Posición relativa de dos rectas

35 Estudia la posición relativa de los siguientes pares de rectas. Calcula el punto de corte cuando sean secantes.

a)
$$r: 5x + y + 7 = 0$$
; $s: \begin{cases} x = 2t + 1 \\ y = -10t - 3 \end{cases}$

b)
$$r: 3x + 5y + 10 = 0$$
; $s: -3x + 5y + 10 = 0$

c)
$$r:$$

$$\begin{cases} x = 3t - 1 \\ y = t + 3 \end{cases}$$
; $s:$
$$\begin{cases} x = t \\ y = 2t \end{cases}$$

d)
$$r: y = 2x + 1$$
; $s: y = \frac{-1}{2}x + 1$

a) Buscamos un vector dirección de cada recta:

$$r: 5x + y + 7 = 0 \rightarrow \vec{n}_r = (5, 1) \rightarrow \vec{v}_r = (-1, 5)$$

s:
$$\begin{cases} x = 2t + 1 \\ y = -10t - 3 \end{cases} \rightarrow \vec{v}_s = (2, -10)$$

Como los vectores dirección son proporcionales $(\vec{v}_s = -2\vec{v}_r)$, las rectas o son paralelas o son coincidentes

Como $P(1, -3) \in s$ y $P \notin r$, las rectas son paralelas.

b) Buscamos un vector dirección de cada recta:

$$r: 3x + 5y + 10 = 0 \rightarrow \vec{n}_r = (3, 5) \rightarrow \vec{v}_r = (-5, 3)$$

$$s: -3x + 5y + 10 = 0 \rightarrow \vec{n}_s = (-3, 5) \rightarrow \vec{v}_s = (5, 3)$$

Como los vectores dirección no son proporcionales, las rectas son secantes.

Resolviendo el sistema formado por las ecuaciones de las dos rectas se obtiene el punto de corte, (0, -2).

c) Buscamos un vector dirección de cada recta

$$r: \begin{cases} x = 3t - 1 \\ y = t + 3 \end{cases} \rightarrow \overrightarrow{\mathbf{v}}_r = (3, 1)$$

$$s: \begin{cases} x = t \\ y = 2t \end{cases} \rightarrow \overrightarrow{v}_s = (1, 2)$$

Como los vectores dirección no son proporcionales, las rectas son secantes.

El punto de corte se obtiene tomando t = 1 en la recta r y t = 2 en la recta s. Es el punto (2, 4).

d)
$$m_r = 2$$
; $m = -\frac{1}{2}$ \rightarrow Las rectas son perpendiculares.

$$\begin{cases} y = 2x + 1 \\ y = -\frac{1}{2}x + 1 \end{cases} \rightarrow x = 0, y = 1 \rightarrow \text{Punto de corte } P = (0, 1).$$

Calcula el valor de los parámetros k y t para que las siguientes rectas se corten en el punto A(1,2):

$$r: kx - ty - 4 = 0$$
 $s: 2tx + ky - 2 = 0$

$$A \in r \rightarrow k \cdot 1 - t \cdot 2 - 4 = 0$$
 $k - 2t - 4 = 0$ Resolviendo el sistema: $A \in s \rightarrow 2t \cdot 1 + k \cdot 2 - 2 = 0$ $2k + 2t - 2 = 0$ $k = 2, t = -1$

37 Determina k para que las rectas r y s sean paralelas.

$$r: \frac{x-2}{3} = \frac{y}{-2}$$
 $s: \frac{x+5}{-6} = \frac{y-1}{k}$

Para que sean paralelas, sus vectores dirección han de ser proporcionales, es decir:

$$\frac{3}{-6} = \frac{-2}{k} \rightarrow k = 4$$

38 Halla el valor de k para que estas rectas sean coincidentes:

$$r: 2x + 3y + 5 = 0$$

$$s: \begin{cases} x = -6t + k \\ y = 4t + 2 \end{cases}$$

Expresamos ambas rectas en forma implícita:

$$r: 2x + 3y + 5 = 0$$

$$s: 4x + 6y - 12 - 4k = 0$$

Para que r = s, estas ecuaciones tienen que ser proporcionales, y por tanto:

$$-12 - 4k = 10 \rightarrow k = \frac{22}{-4} = \frac{-11}{2}$$

39 Calcula k para que r y s sean perpendiculares.

$$r: \gamma = 2x + 1$$

$$s: 3x + ky + 3 = 0$$

$$m_r = 2; m = -\frac{3}{k}$$

Para que sean perpendiculares, $m_r = -\frac{1}{m_s}$.

Luego,
$$2 = \frac{k}{3} \rightarrow k = 6$$

Ángulos

40 Halla el ángulo que forman los siguientes pares de rectas:

a)
$$r: y = 2x + 5$$
; $s: y = -3x + 1$

b)
$$r: 3x - 5y + 7 = 0$$
; $s: 10x + 6y - 3 = 0$

c)
$$r:$$

$$\begin{cases} x = 3 - t \\ y = 2t \end{cases}$$
; $s:$
$$\begin{cases} x = -1 - 3t \\ y = 4 + t \end{cases}$$

d)
$$r: 2x - y = 0$$
; $s: 2y + 3 = 0$

a)
$$r: y = 2x + 5$$

 $s: y = -3x + 1$ \rightarrow sus pendientes son:
$$\begin{cases} m_r = 2 \\ m_s = -3 \end{cases}$$

$$tg \ \alpha = \left| \frac{m_r - m_s}{1 + m_s m_s} \right| = \left| \frac{2 - (-3)}{1 + 2(-3)} \right| = \left| \frac{5}{-5} \right| = 1 \ \rightarrow \ \alpha = 45^{\circ}$$

b)
$$\overrightarrow{\mathbf{v}} = (3, -5) \perp r_1$$
 $\rightarrow \alpha \equiv \widehat{r_1, r_2} = \overrightarrow{\mathbf{v}, \mathbf{w}} \rightarrow \cos \alpha = \frac{|\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}|}{|\overrightarrow{\mathbf{v}}| |\overrightarrow{\mathbf{w}}|} = \frac{|30 - 30|}{|\overrightarrow{\mathbf{v}}| |\overrightarrow{\mathbf{w}}|} = 0 \rightarrow \alpha = 90^{\circ}$

c) Los vectores dirección de esas rectas son $\vec{d}_1 = (-1, 2)$ y $\vec{d}_2 = (-3, 1)$.

Entonces:

$$\cos \alpha = \frac{\left|\overrightarrow{d_1} \cdot \overrightarrow{d_2}\right|}{\left|\overrightarrow{d_1}\right| \left|\overrightarrow{d_2}\right|} = \frac{\left|3+2\right|}{\sqrt{5} \cdot \sqrt{10}} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \rightarrow \alpha = 45^{\circ}$$

$$\operatorname{d}) \xrightarrow{\overrightarrow{a_1}} = (2, -1) \perp r_1 \\ \xrightarrow{\overrightarrow{a_2}} = (0, 2) \perp r_2 \\ \rightarrow \alpha \equiv \widehat{r_1, r_2} = \overrightarrow{a_1, a_2} \rightarrow$$

$$\rightarrow \cos \alpha = \frac{|\overrightarrow{a_1} \cdot \overrightarrow{a_2}|}{|\overrightarrow{a_1}||\overrightarrow{a_2}|} = \frac{|0-2|}{\sqrt{5} \cdot \sqrt{4}} = \frac{2}{\sqrt{5} \cdot 2} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5} \approx 0,4472 \rightarrow \alpha = 63^{\circ} \ 26' \ 5,82''$$

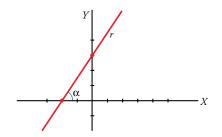
Qué ángulo forma 3x - 2y + 6 = 0 con el eje de abscisas?

* La pendiente de la recta es la tangente del ángulo que forma con el eje de abscisas. Halla el ángulo con la pendiente de la recta.

La pendiente de r es $m_r = \frac{3}{2}$.

La pendiente de r es, además, $tg \alpha$:

$$m_r = tg \alpha \rightarrow tg \alpha = \frac{3}{2} \rightarrow \alpha = 56^{\circ} 18' 35.8''$$

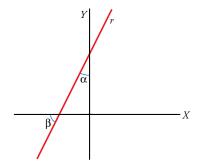


42 ¿Qué ángulo forma la recta 2x - y + 5 = 0 con el eje de ordenadas?

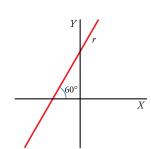
El ángulo pedido, α , es complementario de $\beta \rightarrow tg \beta = \frac{1}{tg \alpha}$

Por otro lado, $tg \beta = m_r = 2$:

$$tg \alpha = \frac{1}{t\sigma \beta} = \frac{1}{2} \rightarrow \alpha = 26^{\circ} 33' 54,2''$$



43 Calcula *n* de modo que la recta 3x + ny - 2 = 0 forme un ángulo de 60° con el eje OX.



$$tg 60^{\circ} = \sqrt{3}$$
 $m_r = -\frac{3}{n}$ Como $tg 60^{\circ} = m_r$, se tiene que:
$$\sqrt{3} = -\frac{3}{n} \rightarrow n = \frac{-3}{\sqrt{3}} = \frac{-3\sqrt{3}}{3} = -\sqrt{3}$$

$$\sqrt{3} = -\frac{3}{n} \rightarrow n = \frac{-3}{\sqrt{3}} = \frac{-3\sqrt{3}}{3} = -\sqrt{3}$$

44 Calcula m y n en estas rectas sabiendo que r pasa por el punto P(1, 4) y que r y s forman un ángulo de 45°:

$$r: mx - 2y + 5 = 0$$
 $s: nx + 6y - 8 = 0$

$$P \in r \rightarrow m \cdot 1 - 2 \cdot 4 + 5 = 0 \rightarrow m = 3$$

$$r: 3x - 2y + 5 = 0 \rightarrow y = \frac{3}{2}x + \frac{5}{2} \rightarrow m_r = \frac{3}{2}$$

$$s: nx + 6y - 8 = 0 \rightarrow y = -\frac{n}{6}x + \frac{8}{6} \rightarrow m_s = -\frac{n}{6}$$

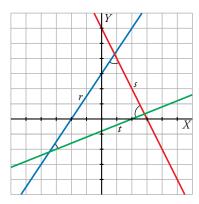
$$tg\ 45^{\circ} = \left| \frac{m_{s} - m_{r}}{1 + m_{s} m_{r}} \right| = \left| \frac{-(n/6) - (3/2)}{1 - (n/6)(3/2)} \right| = \left| \frac{-2n - 18}{12 - 3n} \right| = 1$$

Hay dos posibilidades:

•
$$\frac{-2n-18}{12-3n} = 1 \rightarrow -2n-18 = 12-3n \rightarrow n = 30$$

•
$$\frac{-2n-18}{12-3n} = -1 \rightarrow -2n-18 = -12 + 3n \rightarrow n = -\frac{6}{5}$$

45 Las rectas r: 3x - 2y + 6 = 0, s: 2x + y - 6 = 0 y t: 2x - 5y - 4 = 0 son los lados de un triángulo. Represéntalo y halla sus ángulos.



$$\vec{\mathbf{d}}_r = (2, 3), \ \vec{\mathbf{d}}_s = (-1, 2), \ \vec{\mathbf{d}}_t = (5, 2)$$

$$cos(\widehat{r,s}) = \left| \frac{(2,3) \cdot (-1,2)}{\sqrt{4+9} \cdot \sqrt{1+4}} \right| = 0,49 \rightarrow (\widehat{r,s}) = 60^{\circ} 16^{\circ}$$

$$cos(\widehat{r,t}) = \left| \frac{(2,3) \cdot (5,2)}{\sqrt{4+9} \cdot \sqrt{25+4}} \right| = 0.82 \rightarrow (\widehat{r,t}) = 34^{\circ} 30'$$

$$cos(\widehat{s,t}) = \left| \frac{(-1,2) \cdot (5,2)}{\sqrt{1+4} \cdot \sqrt{25+4}} \right| = 0.08 \rightarrow (\widehat{s,t}) = 85^{\circ} 14'$$

Página 211

Distancias y áreas

46 Calcula k de modo que la distancia entre los puntos A(5, k) y B(3, -2) sea igual a 2.

$$A(5, k), B(3, -2), \overrightarrow{AB} = (-2, -2 - k)$$

$$dist(A, B) = |\overrightarrow{AB}| = \sqrt{(-2)^2 + (-2 - k)^2} = 2 \rightarrow 4 + 4 + 4k + k^2 = 4 \rightarrow k^2 + 4k + 4 = 0 \rightarrow k = -2$$

47 Determina, en cada caso, si el triángulo ABC es equilátero, isósceles o escaleno.

a)
$$A(-1, 0)$$
, $B(1, 0)$, $C(0, \sqrt{3})$

b)
$$A(1,3)$$
, $B(3,5)$, $C(-1,7)$

c)
$$A(2,3)$$
, $B(-1,2)$, $C(-2,-3)$

a)
$$dist(A, B) = \sqrt{(-1-1)^2 + (0-0)^2} = 2$$

$$dist(A, C) = \sqrt{(-1-0)^2 + (0-\sqrt{3})^2} = 2$$

$$dist(B, C) = \sqrt{(1-0)^2 + (0-\sqrt{3})^2} = 2$$

Triángulo equilátero.

b)
$$dist(A, B) = \sqrt{(1-3)^2 + (3-5)^2} = 2\sqrt{2}$$

$$dist(A, C) = \sqrt{(1+1)^2 + (3-7)^2} = 2\sqrt{5}$$

$$dist(B, C) = \sqrt{(3+1)^2 + (5-7)^2} = 2\sqrt{5}$$

Triángulo isósceles.

c)
$$dist(A, B) = \sqrt{(2+1)^2 + (3-2)^2} = \sqrt{10}$$

$$dist(A, C) = \sqrt{(2+2)^2 + (3+3)^2} = 2\sqrt{13}$$

$$dist(B, C) = \sqrt{(2+2)^2 + (3+3)^2} = 2\sqrt{13}$$

Triángulo isósceles.

48 Halla la longitud del segmento que determina la recta x - 2y + 5 = 0 al cortar a los ejes de coordenadas.

Hay que calcular la distancia entre los puntos de corte de la recta con los ejes de coordenadas.

Calculamos primero dichos puntos:

•
$$\begin{cases} x - 2y + 5 = 0 \\ x = 0 \end{cases} \rightarrow -2y + 5 = 0 \rightarrow y = \frac{5}{2} \rightarrow A\left(0, \frac{5}{2}\right) \text{ es el punto de corte con el eje } Y.$$

•
$$\begin{cases} x - 2y + 5 = 0 \\ y = 0 \end{cases} \rightarrow x + 5 = 0 \rightarrow x = 5 \rightarrow B(5, 0) \text{ es el punto de corte con el eje } X.$$

• Luego
$$\overline{AB} = dist(A, B) = \sqrt{(5-0)^2 + \left(0 - \frac{5}{2}\right)^2} = \sqrt{25 + \frac{25}{4}} = \sqrt{\frac{125}{4}} = \frac{5}{2}\sqrt{5}$$

49 Halla las distancias de O(0, 0) y P(-1, 2) a estas rectas:

a)
$$3x - 4y + 5 = 0$$
 b) $2x + 5 = 0$

b)
$$2x + 5 = 0$$

c)
$$\begin{cases} x = 6t \\ y = 8t \end{cases}$$

d)
$$(x, y) = \left(\frac{-1}{2}, 1\right) + (2, 1)k$$

a)
$$dist(O, r) = \frac{|5|}{\sqrt{9+16}} = 1 \text{ u}$$

$$dist(P, r) = \frac{|3 \cdot (-1) - 4 \cdot 2 + 5|}{\sqrt{9 + 16}} = \frac{6}{5} u$$

b)
$$dist(O, r) = \frac{|5|}{\sqrt{0+4}} = \frac{5}{2} u$$

$$dist(P, r) = \frac{|2 \cdot (-1) + 5|}{\sqrt{0 + 4}} = \frac{3}{2} u$$

c)
$$r: \frac{x}{6} = \frac{y}{8} \to 8x - 6y = 0$$

$$dist(O, r) = \frac{|0|}{\sqrt{64 + 36}} = 0 \text{ u } \rightarrow O \in r$$

$$dist(P, r) = \frac{\left|8 \cdot (-1) - 6 \cdot 2\right|}{\sqrt{64 + 36}} = 2 \text{ u}$$

d)
$$r: \frac{x+\frac{1}{2}}{2} = \frac{y-1}{1} \rightarrow x+\frac{1}{2} = 2y-2 \rightarrow x-2y+\frac{3}{2} = 0 \rightarrow 2x-4y+3=0$$

$$dist(O, r) = \frac{|3|}{\sqrt{4+16}} = \frac{3}{10}\sqrt{5} \text{ u}$$

$$dist(P, r) = \frac{|2 \cdot (-1) - 4 \cdot 2 + 3|}{\sqrt{4 + 16}} = \frac{7}{10}\sqrt{5} \text{ u}$$

50 Determina c para que la distancia de r: x - 3y + c = 0 al punto (6, 2) sea de $\sqrt{10}$ unidades (hay dos soluciones).

$$dist(P, r) = \frac{\left|1 \cdot 6 - 3 \cdot 2 + c\right|}{\sqrt{1 + 9}} = \frac{\left|6 - 6 + c\right|}{\sqrt{10}} = \frac{\left|c\right|}{\sqrt{10}} = \sqrt{10}$$

Hay dos soluciones:
$$\begin{cases} \frac{|c|}{\sqrt{10}} = \sqrt{10} & \rightarrow c_1 = 10 \\ \frac{|c|}{\sqrt{10}} = -\sqrt{10} & \rightarrow c_2 = -10 \end{cases}$$

x-3y+10=0

Las dos rectas solución serán dos rectas paralelas.

51 Halla la distancia entre los siguientes pares de rectas:

a)
$$r: 3x + 5 = 0$$
; $r': \begin{cases} x = 0 \\ y = 3 + 4k \end{cases}$

b)
$$r: y = \frac{-2}{3}x + 1$$
; $r': \frac{1-x}{3} = \frac{y+1}{2}$

a)
$$P' = (0, 0) \in r'$$

$$dist(r, r') = dist(P', r) = \frac{|5|}{\sqrt{9+0}} = \frac{5}{3} u$$

b) Las rectas son paralelas.

$$P' = (1, -1) \in r'$$

$$r: 2x + 3y - 1 = 0$$

$$dist(r, r') = dist(P', r) = \frac{|2-3-1|}{\sqrt{4+9}} = \frac{2}{13}\sqrt{13} u$$

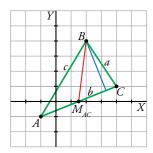
52 Comprueba que el triángulo de vértices A(-3, 1), B(0, 5) y C(4, 2) es rectángulo y halla su área.

Veamos si se cumple el teorema de Pitágoras:

$$\begin{vmatrix} \overrightarrow{AB} \mid = \sqrt{(0+3)^2 + (5-1)^2} = 5 \\ |\overrightarrow{AC}| = \sqrt{(4+3)^2 + (2-1)^2} = \sqrt{50} \end{vmatrix}$$
 5² + 5² = ($\sqrt{50}$)² \rightarrow Por tanto, el triángulo es rectángulo.
$$|\overrightarrow{BC}| = \sqrt{4^2 + (2-5)^2} = 5$$

Área =
$$\frac{1}{2} \cdot |\overrightarrow{AB}| \cdot |\overrightarrow{BC}| = \frac{1}{2} \cdot 25 = 12,5 \text{ u}^2$$

53 En el triángulo de vértices A(-1,-1), B(2,4) y C(4,1), halla las longitudes de la mediana y de la altura que parten de B.



a) Longitud de la mediana = $dist(B, M_{AC})$

$$M_{AC} = \left(\frac{3}{2}, 0\right)$$

dist
$$(B, M_{AC}) = \sqrt{\left(2 - \frac{3}{2}\right)^2 + (4 - 0)^2} = \frac{1}{2}\sqrt{65}$$

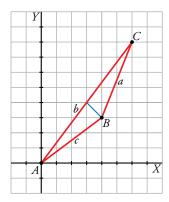
b) Longitud de la altura = dist(B, lado AC)

$$\overrightarrow{AC}$$
 = (5, 2)

$$r: \frac{x+1}{5} = \frac{y+1}{2} \to 2x + 2 = 5y + 5 \to \text{lado } AC: 2x - 5y - 3 = 0$$

$$dist(B, r) = \frac{|2 \cdot 2 - 5 \cdot 4 - 3|}{\sqrt{4 + 25}} = \frac{19}{29}\sqrt{29} \text{ u}$$

54 Dado el triángulo de vértices A(0,0), B(4,3) y C(6,8), calcula su área.



Área =
$$\frac{1}{2}$$
 · base · altura

Base =
$$dist(A, C) = \sqrt{(0-6)^2 + (0-8)^2} = 10 \text{ u}$$

Altura =
$$dist(B, lado AC)$$

Lado AC:

$$\overrightarrow{AC}$$
 = (6, 8)

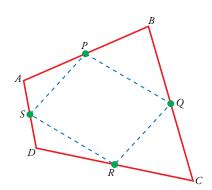
$$r: \frac{x}{6} = \frac{y}{8} \rightarrow 8x - 6y = 0 \rightarrow 4x - 3y = 0$$

$$dist(B, lado AC) = \frac{|4 \cdot 4 - 3 \cdot 3|}{\sqrt{16 + 9}} = \frac{7}{5} u$$

Área =
$$\frac{1}{2}$$
 · base · altura = $\frac{1}{2}$ · $10 \cdot \frac{7}{5}$ = 7 u^2

Para resolver

Los puntos medios de los lados de cualquier cuadrilátero forman un paralelogramo. Compruébalo con el cuadrilátero de vértices A(3,8), B(5,2), C(1,0) y D(-1,6).



$$P\left(\frac{5+3}{2}, \frac{8+2}{2}\right) = (4, 5)$$

$$\overrightarrow{PQ} = (3-4, 1-5) = (-1, -4)$$

 $\overrightarrow{SR} = (0-1, 3-7) = (-1, -4)$

$$\overrightarrow{SP} = (4-1, 5-7) = (3, -2) \overrightarrow{RQ} = (3-0, 1-3) = (3, -2)$$
 $\overrightarrow{SP} = \overrightarrow{RQ}$

56 En un triángulo equilátero conocemos dos vértices, $A(\sqrt{3}/2, 0)$ y $B(-\sqrt{3}/2, 0)$. Halla el tercer vértice.

El vértice C = (x, y) está en la mediatriz del segmento AB y dist(A, C) = dist(A, B).

r: Mediatriz de AB

$$\overrightarrow{AB} = (-\sqrt{3}, 0)$$

Punto medio de AB:

$$M_{AB} = (0, 0)$$

$$r: x = 0$$

$$dist(A, C) = \sqrt{\left(\frac{\sqrt{3}}{2} - x\right)^2 + (0 - y)^2} = \sqrt{x^2 - \sqrt{3}x + y^2 + \frac{3}{4}}$$

$$dist(A, B) = \sqrt{\left(-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}\right)^2 + (0 - 0)^2} = \sqrt{3}$$

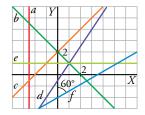
Las coordenadas de C son la solución del siguiente sistema de ecuaciones:

$$\begin{cases} x = 0 \\ x^2 - \sqrt{3}x + y^2 + \frac{3}{4} = \sqrt{3} \end{cases} \rightarrow \begin{cases} x = 0 \\ y^2 + \frac{3}{4} = \sqrt{3} \end{cases} \rightarrow y = \frac{1}{2}\sqrt{4\sqrt{3} - 3} \rightarrow y = -\frac{1}{2}\sqrt{4\sqrt{3} - 3}$$

Hay dos triángulos equiláteros con vértices A y B.

$$C = \left(0, \frac{1}{2}\sqrt{4\sqrt{3}-3}\right), C' = \left(0, -\frac{1}{2}\sqrt{4\sqrt{3}-3}\right)$$

57 Halla las ecuaciones de las rectas a, b, c, d, e y f.



$$a \rightarrow x = -\frac{5}{2}$$

$$b \rightarrow \frac{x-2}{1} = \frac{y}{-1}$$

$$c \rightarrow \frac{x}{1} = \frac{y-2}{1}$$

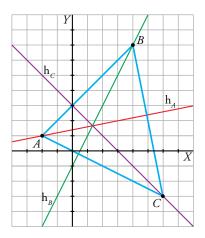
$$d \rightarrow \frac{x-1}{2} = \frac{y-1}{3}$$

$$e \rightarrow y = 1$$

 $f \rightarrow \text{Si } f$ forma un ángulo de 60° con el eje vertical, entonces forma un ángulo de 30° con el eje horizontal positivo.

Un vector cuya pendiente sea de 30° tiene coordenadas proporcionales a $(3, \sqrt{3})$, luego la ecuación de la recta es: $\frac{x}{3} = \frac{y+2}{\sqrt{3}}$

58 Calcula las ecuaciones de las alturas del triángulo de vértices A(-2, 1), B(4, 7) y C(6, -3). Halla el ortocentro.



• h_A es perpendicular a BC y pasa por A = (1, 3).

$$\overrightarrow{BC} = (2, -10) = 2(1, -5)$$

 h_A tiene vector de dirección $\vec{d} = (5, 1)$ y pasa por A = (-2, 1).

$$h_A: \frac{x+2}{5} = \frac{y-1}{1} \rightarrow x+2 = 5y-5 \rightarrow x-5y+7 = 0$$

• h_B es perpendicular a AC y pasa por B = (4, 7).

$$\overrightarrow{AC}$$
 = $(8, -4)$ = $4(2, -1)$

 h_B tiene vector de dirección $\vec{d} = (1, 2)$ y pasa por B = (4, 7).

$$h_B: \frac{x-4}{1} = \frac{y-7}{2} \rightarrow 2x-8 = y-7 \rightarrow 2x-y-1 = 0$$

• h_C es perpendicular a AB y pasa por C = (6, -3).

$$\overrightarrow{AB}$$
 = (6, 6) = 6(1, 1)

 h_C tiene vector de dirección $\vec{d} = (-1, 1)$ y pasa por C = (6, -3).

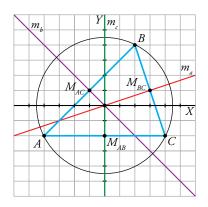
$$h_C: \frac{x-6}{-1} = \frac{y+3}{1} \rightarrow x-6 = -y-3 \rightarrow x+y-3 = 0$$

El ortocentro es el punto de intersección de las alturas. Como las tres alturas se cortan en el mismo punto, para calcular el ortocentro es suficiente con resolver el sistema formado por dos de las alturas.

$$\begin{cases} 2x - y - 1 = 0 \\ x + y - 3 = 0 \end{cases} \rightarrow x = \frac{4}{3}, y = \frac{5}{3}$$

Las coordenadas del ortocentro son $\left(\frac{4}{3}, \frac{5}{3}\right)$.

59 Da las ecuaciones de las mediatrices del triángulo de vértices A(-4, -2), B(4, -2) y C(2, 4). Halla el circuncentro.



• m_a es perpendicular a BC y pasa por M_{BC} .

BC tiene vector de dirección $\overrightarrow{BC} = (-2, 6) = 2(-1, 3)$.

$$M_{BC} = (3, 1)$$

 m_a tiene vector de dirección $\vec{d} = (3, 1)$ y pasa por $M_{BC} = (3, 1)$.

$$m_a: \frac{x-3}{3} = \frac{y-1}{1} \rightarrow x-3y = 0$$

• m_b es perpendicular a AC y pasa por M_{AC} .

AC tiene vector de dirección $\overrightarrow{AC} = (6, 6) = 6(1, 1)$.

$$M_{AC} = (-1, 1)$$

 m_b tiene vector de dirección $\vec{d} = (1, -1)$ y pasa por $M_{BC} = (-1, 1)$.

$$m_b: \frac{x+1}{1} = \frac{y-1}{-1} \to x+y=0$$

• m_c es perpendicular a AB y pasa por M_{AB} .

AB tiene vector de dirección $\overrightarrow{AB} = (8, 0) = 8(1, 0)$.

$$M_{AB} = (0, -2)$$

 m_c tiene vector de dirección $\vec{d} = (0, 1)$ y pasa por $M_{AB} = (0, -2)$.

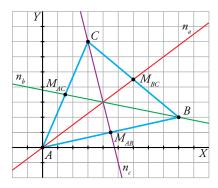
$$m_c$$
: $x = 0$

El circuncentro es el punto de intersección de las mediatrices. Como las tres mediatrices se cortan en el mismo punto, para calcular el circuncentro es suficiente con resolver el sistema formado por dos de las mediatrices.

$$\begin{cases} x = 0 \\ x + y = 0 \end{cases} \rightarrow x = 0, \ y = 0$$

Las coordenadas del circuncentro son: (0, 0).

60 En el triángulo de vértices A(0,0), B(9,2) y C(3,7), determina las ecuaciones de las medianas y calcula el baricentro.



• n_a pasa por A y por M_{BC} .

$$M_{BC} = \left(\frac{12}{2}, \frac{9}{2}\right) = \left(6, \frac{9}{2}\right)$$

$$\overrightarrow{AM_{BC}} = \left(6, \frac{9}{2}\right) = \frac{3}{2}(4, 3)$$

 n_a tiene vector de dirección $\vec{d} = (4, 3)$ y pasa por A = (0, 0).

$$n_a: \frac{x}{4} = \frac{y}{3} \to 3x - 4y = 0$$

• n_b pasa por B y por M_{AC} .

$$M_{AC} = \left(\frac{3}{2}, \frac{7}{2}\right)$$

$$\overrightarrow{BM_{AC}} = \left(\frac{-15}{2}, \frac{3}{2}\right) = \frac{3}{2}(-5, 1)$$

 n_b tiene vector de dirección $\vec{d} = (-5, 1)$ y pasa por B = (9, 2).

$$n_b$$
: $\frac{x-9}{-5} = \frac{y-2}{1} \rightarrow x-9 = -5y+10 \rightarrow x+5y-19 = 0$

• n_c pasa por C y por M_{AB} .

$$M_{AB} = \left(\frac{9}{2}, 1\right)$$

$$\overrightarrow{CM_{AB}} = \left(\frac{3}{2}, -6\right) = \frac{3}{2}(1, -4)$$

 n_c tiene vector de dirección $\vec{d} = (1, -4)$ y pasa por C = (3, 7).

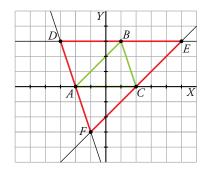
$$n_c$$
: $\frac{x-3}{1} = \frac{y-7}{-4} \rightarrow -4x + 12 = y-7 \rightarrow -4x - y + 19 = 0$

El baricentro es el punto de intersección de las medianas. Como las tres medianas se cortan en el mismo punto, para calcular el baricentro es suficiente con resolver el sistema formado por dos de las medianas.

$$\begin{cases} 3x - 4y = 0 \\ -4x - y + 19 = 0 \end{cases} \rightarrow x = 4, y = 3$$

Las coordenadas del baricentro son: (4, 3).

- 61 En un triángulo de vértices A(-2, 0), B(1, 3) y C(2, 0) trazamos desde cada vértice una recta paralela al lado opuesto. Halla los vértices del triángulo que determinan los puntos de corte de estas rectas y comprueba que es semejante a ABC.
 - * Para comprobar que dos triángulos son semejantes, basta ver que sus ángulos son iguales.



$$\overrightarrow{AB} = (3, 3) = 3(1, 1)$$

 $\overrightarrow{AC} = (4, 0) = 4(1, 0)$

$$\overrightarrow{BC} = (1, -3)$$

El lado EF:

- Es paralelo a AB y pasa por C.
- Tiene vector de dirección $\vec{d} = (1, 1)$ y pasa por C = (2, 0).

•
$$\frac{x-2}{1} = \frac{y}{1} \to x-2 = y \to x-y-2 = 0$$

El lado DE:

- Es paralelo a AC y pasa por B.
- Tiene vector de dirección $\vec{d} = (1, 0)$ y pasa por B = (1, 3).
- y = 3

El lado DF:

- Es paralelo a BC y pasa por A.
- Tiene vector de dirección $\vec{d} = (1, -3)$ y pasa por C = (-2, 0).

•
$$\frac{x+2}{1} = \frac{y}{-3} \rightarrow -3x - 6 = y \rightarrow -3x - y - 6 = 0$$

Los puntos de corte de cada par de rectas son: D(-3, 3), E(5, 3) y F(-1, -3).

$$cos \widehat{D} = cos (\overline{(1, -3), (1, 0)}) = cos (\overline{\overrightarrow{BC}, \overrightarrow{AC}}) = cos \widehat{C}$$

 $cos \widehat{E} = cos (\overline{(1, 1), (1, 0)}) = cos (\overline{\overrightarrow{AB}, \overrightarrow{AC}}) = cos \widehat{A}$

Si tienen dos ángulos iguales, los triángulos son semejantes.

62 La recta 2x + 3y - 6 = 0 determina, al cortar a los ejes de coordenadas, el segmento AB.

Halla la ecuación de la mediatriz de AB.

Ecuación del eje OX: y = 0. Ecuación del eje OY: x = 0.

Puntos de corte de r con los ejes:

$$\begin{cases} 2x + 3y - 6 = 0 \\ y = 0 \end{cases} \to x = 3, y = 0 \to A = (3, 0)$$

$$\begin{cases} 2x + 3y - 6 = 0 \\ x = 0 \end{cases} \rightarrow x = 0, y = 2 \rightarrow B = (0, 2)$$

$$\overrightarrow{AB} = (-3, 2); M_{AB} = \left(\frac{3}{2}, 1\right)$$

La mediatriz de AB tiene vector de dirección $\vec{d} = (2, 3)$ y pasa por $M_{AB} = \left(\frac{3}{2}, 1\right)$.

Mediatriz de AB:
$$\frac{x-\frac{3}{2}}{2} = \frac{y-1}{3}$$

63 Halla el pie de la perpendicular trazada desde P(1, -2) a la recta r: x - 2y + 4 = 0.

* Escribe la perpendicular a r desde P y halla el punto de corte con r.

Vector normal a $r: \vec{n} = (1, -2)$

La recta s perpendicular a r que pasa por P, tiene vector de dirección $\vec{d} = (1, -2)$ y pasa por P(1, -2).

$$s: \frac{x-1}{1} = \frac{y+2}{-2} \rightarrow -2x + 2 = y + 2 \rightarrow -2x - y = 0$$

El pie de la perpendicular Q es la intersección de las dos rectas r y s.

$$\begin{cases} x - 2y + 4 = 0 \\ -2x - y = 0 \end{cases} \to x = -\frac{4}{5}, y = \frac{8}{5} \to Q = \left(-\frac{4}{5}, \frac{8}{5}\right)$$

64 De un rombo ABCD sabemos que los vértices B y D están en la recta r: y = 2x + 2 y que A(4, 0). Halla las coordenadas de C.

La diagonal BD están en la recta r.

Las diagonales de un rombo son perpendiculares y se cortan en el punto medio, luego la perpendicular trazada desde A a la recta r, que llamaremos s, cortará a r en el punto medio M entre A y C = (x, y).

La recta s perpendicular a r tiene pendiente $m = -\frac{1}{2}$ y pasa por A = (4, 0).

$$s: y = -\frac{1}{2}x + k$$

Sustituimos las coordenadas de A en la ecuación para calcular k.

$$0 = -\frac{1}{2} \cdot 4 + k \rightarrow k = 2 \rightarrow s: y = -\frac{1}{2}x + 2$$

$$M = r \cap s$$

$$\begin{cases} y = 2x + 2 \\ y = -\frac{1}{2}x + 2 \end{cases} \rightarrow x = 0, y = 2 \rightarrow M = (0, 2)$$

$$(0, 2) = \left(\frac{x+4}{2}, \frac{y}{2}\right) \to \begin{cases} 0 = \frac{x+4}{2} \to x = -4 \\ 2 = \frac{y}{2} \to y = 4 \end{cases} \to C = (-4, 4)$$

65 Calcula el área del triángulo cuyos lados están sobre las rectas r: x = 3; s: 2x + 3y - 6 = 0 y t: x - y - 7 = 0.

Los vértices están en la intersección de las rectas.

$$A = r \cap s$$

$$\begin{cases} x = 3 \\ 2x + 3y - 6 = 0 \end{cases} \to x = 3, y = 0 \to A = (3, 0)$$

$$B = r \cap t$$

$$\begin{cases} x = 3 \\ x - y - 7 = 0 \end{cases} \to x = 3, y = -4 \to B = (3, -4)$$

$$C = s \cap t$$

$$\begin{cases} 2x + 3y - 6 = 0 \\ x - y - 7 = 0 \end{cases} \rightarrow x = \frac{27}{5}, y = -\frac{8}{5} \rightarrow C = \left(\frac{27}{5}, -\frac{8}{5}\right)$$

Área =
$$\frac{1}{2}$$
 · base · altura

Base =
$$dist(A, B) = \sqrt{(3-3)^2 + (0-4)^2} = 4 \text{ u}$$

Altura = dist(C, lado AB)

Lado
$$AB = l$$
; $\overrightarrow{AB} = (0, 4) = 4(0, 1)$

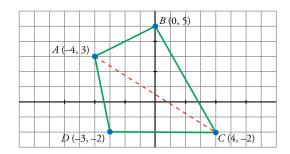
l tiene vector de dirección $\vec{d} = (0, 1)$ y pasa por A = (3, 0).

$$l: x = 3 \rightarrow x - 3 = 0$$

$$dist(C, lado AB) = \frac{\left|\frac{27}{5} - 3\right|}{1} = \frac{12}{5} u$$

Área =
$$\frac{1}{2}$$
 · base · altura = $\frac{1}{2}$ · 4 · $\frac{12}{5}$ = $\frac{24}{5}$ u^2

66 Halla el área del cuadrilátero de vértices A(-4,3), B(0,5), C(4,-2) y D(-3,-2).



• La diagonal AC divide el cuadrilátero en dos triángulos con la misma base, cuya medida es:

$$|\overrightarrow{AC}| = |(8, -5)| = \sqrt{89}$$

• Sean h_B y h_D las alturas desde B y D, respectivamente, a la base:

$$h_B = dist(B, r)$$
 y $h_D = dist(D, r)$

donde r es la recta que contiene el segmento \overrightarrow{AC} .

Tomando como vector dirección de r el vector \overrightarrow{AC} , la ecuación de dicha recta es:

$$\begin{cases} 5x + 8y + k = 0 \\ \text{Como}(-4,3) \in r \end{cases} -20 + 24 + k = 0 \rightarrow k = -4 \rightarrow r: 5x + 8y - 4 = 0$$

Luego:

$$h_B = dist(B, r) = \frac{|5 \cdot 0 + 8 \cdot 5 - 4|}{\sqrt{89}} = \frac{36}{\sqrt{89}}$$

$$h_D = dist(D, r) = \frac{|5(-3) + 8(-2) - 4|}{\sqrt{89}} = \frac{35}{\sqrt{89}}$$

• Así:

$$A_{ABCD} = A_{ABC} + A_{ADC} = \frac{b \cdot h_B}{2} + \frac{b \cdot h_D}{2} = \frac{b}{2} (h_B + h_D) = \frac{\sqrt{89}}{2} \left(\frac{36}{\sqrt{89}} + \frac{35}{\sqrt{89}} \right) = \frac{71}{2}$$

- 67 El lado desigual del triángulo isósceles ABC, tiene por extremos A(1, -2) y B(4, 3). El vértice C está en la recta 3x y + 8 = 0. Halla las coordenadas de C y el área del triángulo.
 - La recta del lado desigual (base) tiene como vector dirección $\overrightarrow{AB} = (3, 5)$:

$$r: \begin{cases} x = 1 + 3t \\ y = -2 + 5t \end{cases} \to \frac{x - 1}{3} = \frac{y + 2}{5} \to r: 5x - 3y - 11 = 0$$

• La recta que contiene la altura tiene por vector dirección $\vec{a} = (-5, 3) \perp \overrightarrow{AB}$ y pasa por el punto medio del lado desigual AB, es decir, por $M\left(\frac{5}{2}, \frac{1}{2}\right)$:

$$h_c: \begin{cases} x = \frac{5}{2} - 5t \\ y = \frac{1}{2} + 3t \end{cases} \rightarrow \frac{2x - 5}{-10} = \frac{2y - 1}{6} \rightarrow h_c: 12x + 20y - 40 = 0 \rightarrow h_c: 6x + 10y - 20 = 0$$

• $C = s \cap h_c$ donde s: 3x - y + 8 = 0.

$$\begin{cases} 3x - y + 8 = 0 \\ 6x + 10y - 20 = 0 \end{cases} \rightarrow \begin{cases} -6x + 2y - 16 = 0 \\ 6x + 10y - 20 = 0 \end{cases}$$

$$12y - 36 = 0 \rightarrow y = \frac{36}{12} = 3 \rightarrow 3x - 3 + 8 = 0 \rightarrow 3x + 5 = 0 \rightarrow x = \frac{-5}{3}$$

Luego:
$$C\left(\frac{-5}{3},3\right)$$

• Área =
$$\frac{\text{base} \cdot \text{altura}}{2} = \frac{|\overrightarrow{AB}||\overrightarrow{CM}|^{(*)}}{2} = \frac{\sqrt{34} \cdot \sqrt{\left(\frac{850}{6}\right)}}{2} \approx 14,17$$

(*)
$$\begin{cases} \overrightarrow{AB} = (3,5) \rightarrow |\overrightarrow{AB}| = \sqrt{34} \\ \overrightarrow{CM} \left(\frac{-25}{6}, \frac{-5}{2} \right) \rightarrow |\overrightarrow{CM}| = \frac{\sqrt{850}}{6} \end{cases}$$

68 Calcula c para que la distancia entre las rectas de ecuaciones 4x + 3y - 6 = 0 y 4x + 3y + c = 0 sea igual a 3.

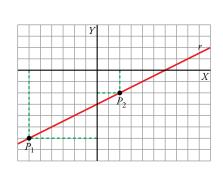
Sea
$$P \in r_1$$
 donde $x_0 = 0 \rightarrow y_0 = 2 \rightarrow P(0, 2) \in r_1$

Así,
$$dist(r_1, r_2) = dist(P, r_2) = \frac{|4 \cdot 0 + 3 \cdot 2 + c|}{\sqrt{16 + 9}} = 3 \rightarrow \frac{|6 + c|}{5} = 3 \rightarrow \begin{cases} 6 + c = 15 \rightarrow c_1 = 9 \\ 6 + c = -15 \rightarrow c_2 = -21 \end{cases}$$

69 Encuentra un punto en la recta x-2y-6=0 que equidiste de los ejes de coordenadas.

Eje X:
$$y = 0$$

Eje Y: $x = 0$
 $P(x, y) \in r$ \Rightarrow $\begin{cases} dist (P, eje X) = dist (P, eje Y) \\ x - 2y - 6 = 0 \end{cases} \Rightarrow \begin{cases} \frac{|y|}{\sqrt{0^2 + 1^2}} = \frac{|x|}{\sqrt{0^2 + 1^2}} \\ x - 2y - 6 = 0 \end{cases} \Rightarrow dos casos: \begin{cases} x = y \\ x = -y \end{cases} \Rightarrow \begin{cases} y - 2y - 6 = 0 \Rightarrow y_1 = -6 \Rightarrow x_1 = -6 \\ -y - 2y - 6 = 0 \Rightarrow y_2 = -2 \Rightarrow x_2 = 2 \end{cases} \Rightarrow \begin{cases} P_1 (-6, -6) \\ P_2 (2, -2) \end{cases}$



70 Determina, en cada caso, un punto P de la recta r: y = -x + 1 tal que:

- a) La distancia de P a s: 3x 4y + 2 = 0 sea 1.
- b) P diste 3 unidades del eje OX.
- c) La distancia de P al eje OY sea 4 unidades.
- d) P equidiste de las rectas x-y+5=0 y x+y+1=0.

a)
$$P = (x, y)$$

$$P \in r \rightarrow y = -x + 1$$

$$dist(P, r) = \frac{|3x - 4y + 2|}{\sqrt{9 + 16}} = 1$$

Las coordenadas de P son la solución del sistema de ecuaciones:

$$\begin{cases} y = -x + 1 \\ \frac{|3x - 4y + 2|}{\sqrt{9 + 16}} = 1 \end{cases} \to \frac{|3x - 4(-x + 1) + 2|}{\sqrt{9 + 16}} = 1 \to$$

$$\Rightarrow \begin{cases}
\frac{3x - 4(-x + 1) + 2}{\sqrt{9 + 16}} = 1 \to x = 1 \\
\frac{3x - 4(-x + 1) + 2}{\sqrt{9 + 16}} = -1 \to x = -\frac{3}{7}
\end{cases}
\Rightarrow \begin{cases}
x = 1 \to y = 0 \\
x = -\frac{3}{7} \to y = \frac{10}{7}
\end{cases}$$

Soluciones:
$$P_1 = (1, 0), P_2 = \left(-\frac{3}{7}, \frac{10}{7}\right)$$

b) Eje
$$OX: y = 0$$

$$dist(P, OX) = \frac{|y|}{1} = 3$$

Las coordenadas de P son la solución del sistema de ecuaciones:

$$\begin{cases} y = -x + 1 \\ \frac{|y|}{1} = 3 \end{cases} \to \frac{|-x + 1|}{1} = 3 \to \begin{cases} \frac{-x + 1}{1} = 3 \to x = -2 \\ \frac{-x + 1}{1} = -3 \to x = 4 \end{cases} \to \begin{cases} x = -2 \to y = 3 \\ x = 4 \to y = -3 \end{cases}$$

Soluciones:
$$P_1 = (-2, 3), P_2 = (4, -3)$$

c) Eie
$$OY: x = 0$$

$$dist(P, OX) = \frac{|x|}{1} = 4$$

Las coordenadas de P son la solución del sistema de ecuaciones:

$$\begin{cases} y = -x + 1 \\ \frac{|x|}{1} = 4 \end{cases} \rightarrow \begin{cases} \frac{x}{1} = 4 \rightarrow x = 4 \\ \frac{x}{1} = -4 \rightarrow x = -4 \end{cases} \rightarrow \begin{cases} x = 4 \rightarrow y = -3 \\ x = -4 \rightarrow y = 5 \end{cases}$$

Soluciones:
$$P_1 = (4, -3), P_2 = (-4, 5)$$

d)
$$dist(P, r) = \frac{|x - y + 5|}{\sqrt{1 + 1}}, dist(P, r') = \frac{|x + y + 1|}{\sqrt{1 + 1}}$$

Las coordenadas de P son la solución del sistema de ecuaciones:

$$\begin{cases} y = -x + 1 \\ \frac{|x - y + 5|}{\sqrt{1 + 1}} = \frac{|x + y + 1|}{\sqrt{1 + 1}} & \to |x - (-x + 1) + 5| = |x + (-x + 1) + 1| \to \end{cases}$$

$$\Rightarrow \begin{cases} x - (-x+1) + 5 = x + (-x+1) + 1 \to x = -1 \\ x - (-x+1) + 5 = -(x + (-x+1) + 1) \to x = -3 \end{cases} \to \begin{cases} x = -1 \to y = 2 \\ x = -3 \to y = 4 \end{cases}$$

Soluciones:
$$P_1 = (-1, 2), P_2 = (-3, 4)$$

Página 212

71 Halla un punto del eje de abscisas que equidiste de las rectas 4x + 3y + 6 = 0 y 3x + 4y - 9 = 0.

P(x, 0) debe verificar dist(P, r) = dist(P, s):

$$\frac{\left|4x+3\cdot0+6\right|}{\sqrt{25}} = \frac{\left|3x+4\cdot0-9\right|}{\sqrt{25}} \to \begin{cases} 4x+6=3x-9 \to x_1=-15\\ 4x+6=-(3x-9) \to x_2=3/7 \end{cases}$$

Soluciones: $P_1(-15, 0), P_2(\frac{3}{7}, 0)$

72 Halla la ecuación de la recta que pasa por el punto de intersección de las rectas r y s y forma un ángulo de 45° con la recta x + 5y - 6 = 0.

$$r: 3x - y - 9 = 0$$
 $s: x - 3 = 0$

Llamamos t a la recta que buscamos. t pasa por $P = r \cap s$ y tiene pendiente m.

$$tg \, 45^{\circ} = \left| \frac{m-5}{1+5m} \right| \to 1 = \left| \frac{m-5}{1+5m} \right| \to \begin{cases} \frac{m-5}{1+5m} = 1 \to m = -\frac{3}{2} \\ \frac{m-5}{1+5m} = -1 \to m = \frac{2}{3} \end{cases}$$

$$\begin{cases} 3x - y - 9 = 0 \\ x - 3 = 0 \end{cases} \rightarrow x = 3, y = 0 \rightarrow P = (3, 0)$$

 t_1 tiene pendiente $m = -\frac{3}{2}$ y pasa por P = (3, 0).

$$t_1$$
: $y = -\frac{3}{2}(x-3)$

 t_2 tiene pendiente $m = \frac{2}{3}$ y pasa por P = (3, 0).

$$t_2$$
: $y = \frac{2}{3}(x-3)$

73 Dadas r: 2x - y - 17 = 0 y s: 3x - ky - 8 = 0, calcula k para que r y s se corten formando un ángulo de 60° .

$$\cos(\widehat{r,s}) = \left| \frac{(1,2) \cdot (k,3)}{\sqrt{1+4} \sqrt{k^2+9}} \right| \to \cos 60^{\circ} = \left| \frac{k+6}{\sqrt{5} \sqrt{k^2+9}} \right| \to \frac{1}{2} = \left| \frac{k+6}{\sqrt{5} \sqrt{k^2+9}} \right| \to \begin{cases} \frac{1}{2} = \frac{k+6}{\sqrt{5} \sqrt{k^2+9}} & \to k = 24 - 15\sqrt{3} \\ -\frac{1}{2} = \frac{k+6}{\sqrt{5} \sqrt{k^2+9}} & \to k = 24 + 15\sqrt{3} \end{cases}$$

Soluciones: $k_1 = 24 - 15\sqrt{3}$; $k_2 = 24 + 15\sqrt{3}$

74 Halla los ángulos del triángulo cuyos vértices son A(-3, 2), B(8, -1) y C(3, -4).

$$\overrightarrow{AB} = (11, -3); \ \overrightarrow{AC} = (6, -6) = 6(1, -1); \ \overrightarrow{BC} = (-5, -3)$$

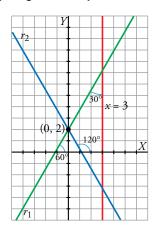
r contiene al lado AB; s contiene al lado AC; t contiene al lado BC

$$cos(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{(11, -3) \cdot (1, -1)}{\sqrt{121 + 9} \sqrt{1 + 1}} = 0,87 \rightarrow (\overrightarrow{AB}, \overrightarrow{AC}) = 29^{\circ} 45'$$

$$cos(\widehat{BA}, \widehat{BC}) = \frac{(-11, 3) \cdot (-5, -3)}{\sqrt{121 + 9} \sqrt{25 + 9}} = 0,69 \rightarrow (\widehat{BA}, \widehat{BC}) = 46^{\circ}14'$$

$$(\overrightarrow{CA}, \overrightarrow{CB}) = 180^{\circ} - (29^{\circ} 45' + 46^{\circ} 14') = 104^{\circ} 1'$$

75 Halla la ecuación de la recta que pasa por (0, 2) y forma un ángulo de 30° con x = 3.



La recta r forma un ángulo de 60° o de 120° con el eje OX. Su pendiente es:

$$m_1 = tg 60^\circ = \sqrt{3}$$
, o bien
 $m_2 = tg 120^\circ = -\sqrt{3}$

Teniendo en cuenta que debe pasar por P(0, 2), las posibles soluciones son:

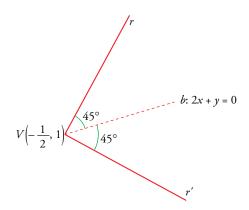
$$r_1 \colon y = \sqrt{3}x + 2$$

$$r_2$$
: $y = -\sqrt{3}x + 2$

76 La recta 2x + y = 0 es la bisectriz de un ángulo recto cuyo vértice es $\left(-\frac{1}{2}, 1\right)$.

Halla las ecuaciones de los lados del ángulo.

Las pendientes de las tres rectas son: $m_b = -2$, m_r , $m_{r'}$



$$\begin{split} tg\,45^\circ &= \left|\frac{m_b - m_r}{1 + m_b\,m_r}\right| \,\to\, 1 = \left|\frac{-2 - m_r}{1 - 2m_r}\right| \,\to\, \\ &\to \begin{cases} 1 - 2m_r = -2 - m_r \,\to\, m_r = 3 \\ -1 + 2m_{r'} = -2 - m_{r'} \,\to\, m_{r'} = -1/3 \end{cases} \,\to\, \\ &\to \begin{cases} r\colon y - 1 = 3\left(x + \frac{1}{2}\right) \,\to\, y = 3x + \frac{5}{2} \\ r'\colon y - 1 = \frac{-1}{3}\left(x + \frac{1}{2}\right) \,\to\, y = \frac{-1}{3}\,x + \frac{5}{6} \end{split}$$

77 Halla las ecuaciones de las rectas que pasan por A(-2, 2) y forman un ángulo de 60° con x = y.

 $b: x = y \rightarrow \text{su pendiente es } m_b = 1$

$$tg\ 60^{\circ} = \left| \frac{1-m}{1+1\cdot m} \right| \rightarrow \sqrt{3} = \left| \frac{1-m}{1+m} \right| \rightarrow$$

$$\Rightarrow \begin{cases}
\sqrt{3} + \sqrt{3} \ m = 1 - m \ \Rightarrow \ m_1 = \frac{1 - \sqrt{3}}{\sqrt{3} + 1} \\
-\sqrt{3} - \sqrt{3} \ m = 1 - m \ \Rightarrow \ m_2 = \frac{1 + \sqrt{3}}{-\sqrt{3} + 1}
\end{cases}$$

Teniendo en cuenta que pasan por A(-2, 2):

$$r_1$$
: $y - 2 = \frac{1 - \sqrt{3}}{\sqrt{3} + 1}(x + 2)$

ECUACIONES PUNTO-PENDIENTE

$$r_2$$
: $y - 2 = \frac{1 + \sqrt{3}}{-\sqrt{3} + 1}(x + 2)$

78 Dada la recta r: 2x - 3y + 5 = 0, halla la ecuación de la recta simétrica de r respecto al eje de abscisas.

Calculamos $P = r \cap OX$:

$$\begin{cases} 2x - 3y + 5 = 0 \\ y = 0 \end{cases} \rightarrow x = -\frac{5}{2}, \ y = 0 \rightarrow P = \left(-\frac{5}{2}, 0\right)$$

Buscamos un punto Q de r y encontramos su simétrico, Q', respecto de OX:

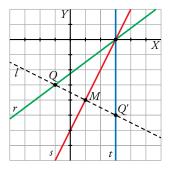
$$Q = \left(0, \frac{5}{3}\right) \rightarrow Q' = \left(0, -\frac{5}{3}\right)$$

La recta r' pasa por P y por Q':

$$\overrightarrow{PQ'} = \left(\frac{5}{2}, -\frac{5}{3}\right) = \frac{5}{6}(3, -2)$$

$$r': \frac{x + \frac{5}{2}}{3} = \frac{y}{-2}$$

79 Halla la recta, t, simétrica a r: -3x + 4y + 9 = 0 respecto de la recta s: 2x - y - 6 = 0.



Calculamos $P = r \cap s$:

$$\begin{cases} -3x + 4y + 9 = 0 \\ 2x - y - 6 = 0 \end{cases} \rightarrow x = 3, y = 0 \rightarrow P = (3, 0)$$

Buscamos un punto $Q \neq P$ de r y encontramos su simétrico, Q', respecto de s.

$$Q \in r \rightarrow x = -1 \rightarrow y = -3$$

$$Q = (-1, -3)$$

Simétrico de Q respecto de s:

Calculamos la recta *l* perpendicular a *s* que pasa por *Q*:

l tiene vector de dirección $\vec{d} = (2, -1)$ y pasa por Q = (-1, -3).

$$l: \frac{x+1}{2} = \frac{y+3}{-1} \rightarrow -x - 1 = 2y + 6 \rightarrow -x - 2y - 7 = 0$$

$$M = s \cap l$$

$$\begin{cases} -x - 2y - 7 = 0 \\ 2x - y - 6 = 0 \end{cases} \rightarrow x = 1, y = -4 \rightarrow M = (1, -4)$$

M es el punto medio entre Q y Q' = (x, y).

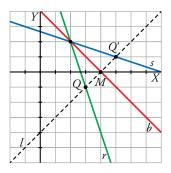
$$(1, -4) = \left(\frac{x-1}{2}, \frac{y-3}{2}\right) \to \begin{cases} 1 = \frac{x-1}{2} \to x = 3\\ -4 = \frac{y-3}{2} \to y = -5 \end{cases} \to Q' = (3, -5)$$

La recta t pasa por P y por Q' = (3, -5):

$$\overrightarrow{PQ'} = (0, -5) = 5(0, 1)$$

$$t: x = 3$$

80 La recta b: y = -x + 4 es la bisectriz del ángulo formado por las rectas r: 3x + y - 8 = 0 y s. Halla la ecuación de s.



s es la simétrica de r respecto de b.

b tiene pendiente m = -1. Calculamos $P = r \cap b$:

$$\begin{cases} 3x + y - 8 = 0 \\ y = -x + 4 \end{cases} \rightarrow x = 2, y = 2 \rightarrow P = (2, 2)$$

Buscamos un punto $Q \neq P$ de r y encontramos su simétrico, Q', respecto de b.

$$Q \in r \rightarrow x = 3 \rightarrow y = -1$$

$$Q = (3, -1)$$

Para hallar el simétrico de Q respecto de b, calculamos la recta l perpendicular a b que pasa por Q:

l tiene vector de dirección $\vec{d} = (1, 1)$ y pasa por Q = (3, -1).

$$l: \frac{x-3}{1} = \frac{y+1}{1} \rightarrow x-3 = y+1 \rightarrow x-y-4 = 0$$

$$M = b \cap l$$

$$\begin{cases} y = -x + 4 \\ x - y - 4 = 0 \end{cases} \to x = 4, y = 0 \to M = (4, 0)$$

M es el punto medio entre Q y Q' = (x, y):

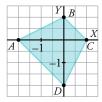
$$(4,0) = \left(\frac{x+3}{2}, \frac{y-1}{2}\right) \to \begin{cases} 4 = \frac{x+3}{2} \to x = 5\\ 0 = \frac{y-1}{2} \to y = 1 \end{cases} \to Q' = (5,1)$$

La recta s pasa por P y por Q' = (5, 1)

$$\overrightarrow{PQ}' = (3, -1)$$

$$s: \frac{x-2}{3} = \frac{y-2}{-1}$$

81 Sean A, B, C y D los puntos de corte de las rectasx - 2y + 2 = 0 y 2x - y - 2 = 0 con los ejes de coordenadas. Prueba que el cuadrilátero ABCD es un trapecio isósceles y halla su área.



Sean:
$$A = r \cap \text{eje } OX$$
:
$$\begin{cases} x - 2y + 2 = 0 \\ y = 0 \end{cases} \rightarrow x = -2 \rightarrow A(-2, 0)$$

$$B = r \cap \text{eje } OY: \begin{cases} x - 2y + 2 = 0 \\ x = 0 \end{cases} \rightarrow y = 1 \rightarrow B(0, 1)$$

$$C = s \cap \text{eje } OX: \begin{cases} 2x - y - 2 = 0 \\ y = 0 \end{cases} \rightarrow x = 1 \rightarrow C(1, 0)$$

$$D = s \cap \text{eje } OY: \begin{cases} 2x - y - 2 = 0 \\ x = 0 \end{cases} \rightarrow y = -2 \rightarrow D(0, -2)$$

Calculamos los vectores dirección de los lados:

$$|\overrightarrow{AB}| = (2,1)$$

$$|\overrightarrow{BC}| = (1,-1)$$

$$|\overrightarrow{CD}| = (-1,-2)$$

$$|\overrightarrow{DA}| = (-2,2)$$

$$|\overrightarrow{AB}| = \sqrt{5} = |\overrightarrow{CD}|$$

Luego, efectivamente, ABCD es un trapecio isósceles de bases BC y DA.

Para calcular el área necesitamos la altura:

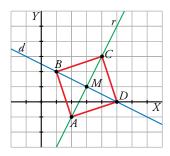
Como
$$\overrightarrow{AD}(2,-2)$$
 $\rightarrow y = -x-2 \rightarrow AD: x+y+2=0$

h =
$$dist(B, AD) = \frac{|0+1+2|}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$$

Así:

Área =
$$\frac{|\overrightarrow{BC}| + |\overrightarrow{DA}|}{2} \cdot \frac{3\sqrt{2}}{2} = \frac{\sqrt{2} + 2\sqrt{2}}{2} \cdot \frac{3\sqrt{2}}{2} = \frac{9 \cdot 2}{4} = \frac{9}{2}$$

82 De un cuadrado conocemos la ecuación de una de sus diagonales, d: x + 2y - 5 = 0, y un vértice, A(2, -1). Calcula el resto de vértices y su área.



 $A \notin d$, luego el vértice C es el simétrico de A respecto de d.

r: perpendicular a d que pasa por A.

r tiene vector de dirección $\vec{d} = (1, 2)$ y pasa por A = (2, -1).

$$r: \frac{x-2}{1} = \frac{y+1}{2} \to 2x - y = 5$$

$$M = r \cap d$$

$$\begin{cases} x + 2y - 5 = 0 \\ 2x - y = 5 \end{cases} \to x = 3, y = 1 \to M = (3, 1)$$

M es el punto medio entre A y C = (x, y).

$$(3, 1) = \left(\frac{x+2}{2}, \frac{y-1}{2}\right) \to \begin{cases} 3 = \frac{x+2}{2} \to x = 4\\ 1 = \frac{y-1}{2} \to y = 3 \end{cases} \to C = (4, 3)$$

El vértice B = (x, y) verifica: $B \in d$ y dist(M, A) = dist(M, B), luego B es solución del sistema:

$$\begin{cases} x + 2y - 5 = 0 \\ \sqrt{(x-3)^2 + (y-1)^2} = \sqrt{(2-3)^2 + (-1-1)^2} \end{cases} \rightarrow$$

$$\rightarrow \begin{cases} x + 2y - 5 = 0 \\ \sqrt{(x - 3)^2 + (y - 1)^2} = \sqrt{5} \end{cases} \rightarrow x = 1, y = 2; x = 5, y = 0$$

Estas son las coordenadas de los vértices que faltan: B = (1, 2), D = (5, 0).

Tenemos un cuadrado de lado $\sqrt{10}$. Su área es 10 u^2 .

La recta x + y - 2 = 0 y una recta paralela a ella que pasa por el punto (0, 5) determinan, junto con los ejes de coordenadas, un trapecio isósceles. Halla su área.

Luego
$$s: x + y - 5 = 0$$

Sean:
$$A = r \cap \text{eje } X$$
:
$$\begin{cases} x + y - 2 = 0 \\ y = 0 \end{cases} \rightarrow x = 2 \rightarrow A(2, 0)$$

$$B = r \cap \text{eje } Y: \begin{cases} x + y - 2 = 0 \\ x = 0 \end{cases} \rightarrow y = 2 \rightarrow B(0, 2)$$

$$C = s \cap \text{eje } X: \begin{cases} x + y - 5 = 0 \\ y = 0 \end{cases} \rightarrow x = 5 \rightarrow C(5, 0)$$

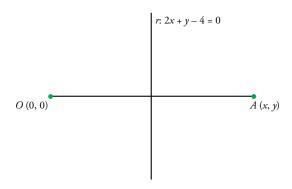
$$D = s \cap \text{eje } Y: \begin{cases} x + y - 5 = 0 \\ x = 0 \end{cases} \rightarrow y = 5 \rightarrow D(0, 5)$$

$$\overrightarrow{AB} = (-2, 2); \ \overrightarrow{CD} = (-5, 5)$$

$$\text{Área} = \frac{|\overrightarrow{AB}| + |\overrightarrow{CD}|}{2} \cdot \text{h} = \frac{|\overrightarrow{AB}| + |\overrightarrow{CD}|}{2} \cdot dist (A, s) =$$

$$= \frac{\sqrt{8} + \sqrt{50}}{2} \cdot \frac{|2 + 0 - 5|}{\sqrt{1^2 + 1^2}} = \frac{2\sqrt{2} + 5\sqrt{2}}{2} \cdot \frac{3}{\sqrt{2}} = \frac{7\sqrt{2}}{2} \cdot \frac{3}{\sqrt{2}} = \frac{21}{2} \text{ u}^2$$

84 La recta 2x + y - 4 = 0 es la mediatriz de un segmento que tiene un extremo en el punto (0, 0). Halla las coordenadas del otro extremo.



Un vector dirección de la recta es $\overrightarrow{v} = (1, -2)$.

• Debe verificarse que:
$$\overrightarrow{v} \perp \overrightarrow{OA} = \overrightarrow{v} \cdot \overrightarrow{OA} = 0$$

 $(1, -2) \cdot (x, y) = 0 \rightarrow x - 2y = 0 \rightarrow x = 2y$

• Además, el punto medio de OA, M, pertenece a la recta:

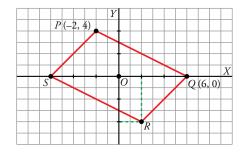
$$M\left(\frac{x}{2}, \frac{y}{2}\right) \in r \to 2 \cdot \frac{x}{2} + \frac{y}{2} - 4 = 0 \to$$

$$\to 2 \cdot \frac{2y}{2} + \frac{y}{2} - 4 = 0 \to 4y + y - 8 = 0 \to$$

$$\to y = \frac{8}{5} \to x = 2 \cdot \frac{8}{5} = \frac{16}{5}$$

Luego: $A\left(\frac{16}{5}, \frac{8}{5}\right)$

85 Los puntos P(-2, 4) y Q(6, 0) son vértices consecutivos de un paralelogramo PQRS con centro en el punto (0, 0). Halla los vértices R y S y los ángulos del paralelogramo.



a) Como las dos diagonales de un paralelogramo se cortan en su punto medio, que es el centro, se tienen fácilmente los otros dos vértices:

$$R(2,-4), S(-6,0)$$

b)
$$\overrightarrow{PQ} = \overrightarrow{SR} = (8, -4) \rightarrow \overrightarrow{QP} = \overrightarrow{RS} = (-8, 4)$$

$$\overrightarrow{PS} = \overrightarrow{QR} = (-4, -4) \rightarrow \overrightarrow{SP} = \overrightarrow{RQ} = (4, 4)$$

$$\cos \hat{P} = \frac{\overrightarrow{PS} \cdot \overrightarrow{PQ}}{|\overrightarrow{PS}||\overrightarrow{PQ}|} = \frac{-32 + 16}{\sqrt{32} \cdot \sqrt{80}} = -0.31623 \rightarrow \hat{P} = 108^{\circ} \ 26' \ 5.8'' = \hat{R}$$

$$\hat{S} = \frac{360^{\circ} - (\hat{P} + \hat{R})}{2} = 71^{\circ} 33' 54'' = \hat{Q}$$

NOTA: Podríamos haber calculado \hat{S} con los vectores:

$$\cos \hat{S} = \frac{\overrightarrow{SP} \cdot \overrightarrow{SR}}{|\overrightarrow{SP}||\overrightarrow{SR}|} = \frac{32 - 16}{\sqrt{32} \cdot \sqrt{80}} = 0,31623 \rightarrow \hat{S} = 71^{\circ} 33' 54''$$

86 Dos de los lados de un paralelogramo están sobre las rectas x + y - 2 = 0 y x - 2y + 4 = 0 y uno de sus vértices es el punto (6, 0). Halla los otros vértices.

• Como las rectas no son paralelas, el punto donde se corten será un vértice:

$$r_{1}: \begin{cases} x + y - 2 = 0 \\ x - 2y + 4 = 0 \end{cases} \rightarrow \begin{cases} x + y - 2 = 0 \\ -x + 2y - 4 = 0 \end{cases}$$

$$3y - 6 = 0 \rightarrow y = 2 \rightarrow x + 2 - 2 = 0 \rightarrow x = 0$$

Luego un vértice es A(0, 2).

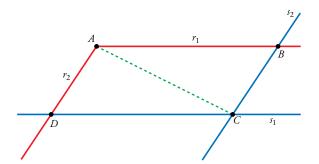
• El vértice que nos dan, C(6, 0), no pertenece a ninguna de las rectas anteriores (pues no verifica sus ecuaciones, como podemos comprobar fácilmente sustituyendo los valores de x e y por las coordenadas de C). Así pues, el vértice C no es consecutivo de A.

Sean $s_1 /\!\!/ r_1$ una recta que pasa por C y $s_2 /\!\!/ r_2$ una recta que pasa por C.

Se trata de las rectas sobre las que están los otros lados.

Así, los otros vértices, B y D, serán los puntos de corte de:

$$r_1 \cap s_2 = B$$
$$r_2 \cap s_1 = D$$



$$s_1: \begin{cases} x + y + a = 0 \\ C \in s_1 \to 6 + 0 + a = 0 \to a = -6 \end{cases} \to s_1: x + y - 6 = 0$$

$$s_2: \begin{cases} x - 2y + b = 0 \\ C \in s_2 \to 6 - 0 + b = 0 \to b = -6 \end{cases} \to s_2: x - 2y - 6 = 0$$

•
$$B = r_1 \cap s_2$$
:
$$\begin{cases} x + y - 2 = 0 \\ x - 2y - 6 = 0 \end{cases}$$

Resolviendo el sistema:

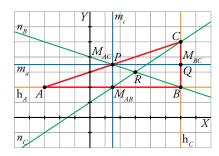
De la primera ecuación $\rightarrow x = 2 - y \rightarrow$ en la segunda $\rightarrow 2 - y - 2y - 6 = 0 \rightarrow$

$$\rightarrow y = \frac{-4}{3} \rightarrow x = \frac{10}{3} \rightarrow B\left(\frac{10}{3}, \frac{-4}{3}\right)$$

•
$$D = r_2 \cap s_1$$
: $\begin{cases} x + 2y + 4 = 0 \\ x + y - 6 = 0 \rightarrow x = 6 - y \end{cases} \rightarrow 6 - y - 2y + 4 = 0 \rightarrow$

$$\rightarrow y = \frac{10}{3} \rightarrow x = \frac{8}{3} \rightarrow D\left(\frac{8}{3}, \frac{10}{3}\right)$$

87 En un triángulo, baricentro, ortocentro y circuncentro están alineados. La recta que los contiene se llama recta de Euler. Compruébalo en el triángulo de vértices A(-3, 2), B(6, 2) y C(6, 5).



• Circuncentro: P.

Calculamos dos mediatrices y su intersección.

 m_a es perpendicular a BC y pasa por M_{BC} .

BC tiene vector de dirección $\overrightarrow{BC} = (6, 5) - (6, 2) = (0, 2) = 2(0, 1)$

$$M_{BC} = \left(6, \frac{7}{2}\right)$$

 m_a tiene vector de dirección $\vec{d} = (1, 0)$ y pasa por $M_{BC} = \left(6, \frac{7}{2}\right)$.

$$m_a$$
: $y = \frac{7}{2}$

 m_c es perpendicular a AB y pasa por M_{AB} .

AB tiene vector de dirección $\overrightarrow{AB} = (6, 2) - (-3, 2) = (9, 0) = 9(1, 0)$.

$$M_{AB} = \left(\frac{3}{2}, 2\right)$$

 m_c tiene vector de dirección $\vec{\mathbf{d}} = (0, 1)$ y pasa por $M_{AB} = \left(\frac{3}{2}, 2\right)$.

$$m_c$$
: $x = \frac{3}{2}$

El circuncentro es el punto de intersección de las mediatrices.

$$\begin{cases} x = \frac{3}{2} \\ y = \frac{7}{2} \end{cases}$$

Las coordenadas del circuncentro son $P = \left(\frac{3}{2}, \frac{7}{2}\right)$.

• Baricentro: R.

Calculamos dos medianas y su intersección.

 n_b pasa por B y por M_{AC} .

$$M_{AC} = \left(\frac{3}{2}, \frac{7}{2}\right)$$

$$\overrightarrow{BM_{AC}} = \left(\frac{3}{2}, \frac{7}{2}\right) - (6, 2) = \left(-\frac{9}{2}, \frac{3}{2}\right) = \frac{3}{2}(-3, 1)$$

 n_b tiene vector de dirección $\vec{d} = (-3, 1)$ y pasa por B = (6, 2).

$$n_b$$
: $\frac{x-6}{-3} = \frac{y-2}{1} \rightarrow x-6 = -3y+6 \rightarrow x+3y-12 = 0$

 n_c pasa por C y por M_{AB} .

$$M_{AB} = \left(\frac{3}{2}, 2\right)$$

$$\overrightarrow{CM_{AB}} = \left(\frac{3}{2}, 2\right) - (6, 5) = \left(-\frac{9}{2}, -3\right) = -\frac{3}{2}(3, 2)$$

 n_c tiene vector de dirección $\vec{d} = (3, 2)$ y pasa por C = (6, 5).

$$n_c$$
: $\frac{x-6}{3} = \frac{y-5}{2} \rightarrow 2x-12 = 3y-15 \rightarrow 2x-3y+3=0$

El baricentro es el punto de intersección de las medianas. Como las tres medianas se cortan en el mismo punto, para calcular el baricentro es suficiente con resolver el sistema formado por dos de las medianas.

$$\begin{cases} x + 3y - 12 = 0 \\ 2x - 3y + 3 = 0 \end{cases} \rightarrow x = 3, y = 3$$

Las coordenadas del baricentro son: R = (3, 3).

• Ortocentro: Q.

Calculamos dos alturas y su intersección.

 h_A es perpendicular a BC y pasa por A = (-3, 2).

$$\overrightarrow{BC}$$
 = (0, 2) = 2(0, 1)

 h_A tiene vector de dirección $\vec{d} = (1, 0)$ y pasa por A = (-3, 2).

$$h_A$$
: $y = 2$

 h_C es perpendicular a AB y pasa por C = (6, 5).

$$\overrightarrow{AB} = 9(1, 0)$$

 h_C tiene vector de dirección $\vec{d} = (0, 1)$ y pasa por C = (6, 5).

$$h_C: x = 6$$

El ortocentro es el punto de intersección de las alturas.

$$\begin{cases} x = 6 \\ y = 2 \end{cases}$$

Las coordenadas del ortocentro son: Q = (6, 2).

$$P = \left(\frac{3}{2}, \frac{7}{2}\right); \ Q = (6, 2); \ R = (3, 3)$$

Para ver si están alineados, calculamos los vectores:

$$\overrightarrow{PQ} = (6, 2) - \left(\frac{3}{2}, \frac{7}{2}\right) = \left(\frac{9}{2}, -\frac{3}{2}\right) = \frac{3}{2}(3, -1)$$

$$\overrightarrow{QR} = (3,3) - (6,2) = (-3,1) = (-1)(3,-1)$$

Luego los vectores son proporcionales y, por tanto, los puntos están alineados.

- 88 De un triángulo conocemos dos vértices, A(0,0) y B(5,0) y la longitud del lado AC, 3. Además, la tangente del ángulo formado por los lados AB y AC es $\frac{4}{3}$.
 - a) Calcula la ecuación del lado AC.
 - b) Determina el vértice C.
 - c) Halla la longitud de la altura relativa a C.
 - d) Obtén el área del triángulo.
 - * Puedes calcular la altura utilizando razones trigonométricas.
 - a) La recta que contiene al lado AC tiene pendiente $\frac{4}{3}$ porque el lado AB está en el eje OX, y la tangente del ángulo que forma una recta con el eje horizontal positivo es su pendiente, luego $r: y = \frac{4}{3}x$.

b) C está en la recta $r: y = \frac{4}{3}x$ y dist(A, C) = 3, luego C es solución del sistema:

$$\begin{cases} y = \frac{4}{3}x \\ \sqrt{(x-0)^2 + (y-0)^2} = 3 \end{cases} \rightarrow x = -\frac{9}{5}, y = -\frac{12}{5}; x = \frac{9}{5}, y = \frac{12}{5}$$

Como la tangente del ángulo es positiva, $C = \left(\frac{9}{5}, \frac{12}{5}\right)$.

c)
$$AB : y = 0$$

Altura =
$$dist(C, AB) = \frac{12}{5} u$$

d)
$$dist(A, B) = 3 u$$

Área =
$$\frac{1}{2} \cdot 3 \cdot \frac{12}{5} = \frac{18}{5} \text{ u}^2$$

- 89 Los puntos $A(-\sqrt{3}, -3)$, $B(\sqrt{3}, -3)$, $C(2\sqrt{3}, 0)$, $D(\sqrt{3}, 3)$, $E(-\sqrt{3}, 3)$ y $F(-2\sqrt{3}, 0)$ son los vértices de un hexágono regular *ABCDEF*. Calcula:
 - a) El centro del hexágono como la intersección de las mediatrices de dos lados consecutivos.
 - b) La longitud de la apotema.
 - c) El área del polígono.

a)
$$\overrightarrow{AB} = (2\sqrt{3}, 0)$$

$$M_{AB} = (0, -3)$$

$$m_{AR}$$
: $x = 0$

$$\overrightarrow{BC} = (\sqrt{3}, 3)$$

$$M_{BC} = \left(\frac{3}{2}\sqrt{3}, \frac{-3}{2}\right)$$

 m_{BC} tiene vector director: $(-3, \sqrt{3})$

$$m_{BC}$$
: $\frac{x - \frac{3}{2}\sqrt{3}}{-3} = \frac{y + \frac{3}{2}}{\sqrt{3}}$

Centro = $m_{AB} \cap m_{BC}$

$$\begin{cases} x = 0 \\ x - \frac{3}{2}\sqrt{3} \\ -3 \end{cases} = \frac{y + \frac{3}{2}}{\sqrt{3}} \rightarrow \frac{-\frac{3}{2}\sqrt{3}}{-3} = \frac{y + \frac{3}{2}}{\sqrt{3}} \rightarrow y = 0$$

Centro =
$$(0, 0)$$

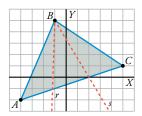
b) Apotema =
$$dist(M_{BC}, Centro) = \sqrt{\left(\frac{3}{2}\sqrt{3} - 0\right)^2 + \left(\frac{-3}{2} - 0\right)^2} = 3 \text{ u}$$

c) Área =
$$\frac{1}{2}$$
 · Perímetro · Apotema

Lado =
$$dist(A, B) = \sqrt{(2\sqrt{3})^2 + (0)^2} = 2\sqrt{3} u$$

Área =
$$\frac{1}{2}$$
 · Perímetro · Apotema = $\frac{1}{2}$ · 6 · $2\sqrt{3}$ = $18\sqrt{3}$ u²

90 Dado el triángulo de vértices A(-4, -2), B(-1, 5) y C(5, 1), halla las ecuaciones de las rectas r y s que parten de B y cortan a AC, dividiendo al triángulo en tres triángulos de igual área.



 La altura de los tres triángulos es igual a la distancia de B al lado AC. Por tanto, tendrán la misma área si tienen la misma base. Así, se trata de hallar los puntos, P y Q, que dividen al lado AC en tres partes iguales.

$$\overrightarrow{OP} = \frac{2\overrightarrow{OA} + \overrightarrow{OC}}{3} = \left(-\frac{2}{3}, -1\right); \quad \overrightarrow{OQ} = \frac{\overrightarrow{OC} + 2\overrightarrow{OC}}{3} = \left(\frac{8}{3}, 0\right)$$

• La recta r es la que pasa por B y por P:

$$m = \frac{-1-5}{(-2/3)-(-1)} = \frac{-6}{(1/3)} = -18$$

$$y = 5 - 18(x + 1) \rightarrow r: 18x + y + 13 = 0$$

• La recta s es la que pasa por B y por Q:

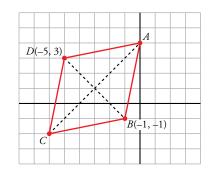
$$m = \frac{5-0}{(-1)-(8/3)} = \frac{-5}{(-11/3)} = -\frac{15}{11}$$

$$y = 5 - \frac{15}{11}(x+1) \rightarrow 11y = 55 - 15x - 15 \rightarrow s: 15x + 11y - 40 = 0$$

91 Un rombo ABCD tiene un vértice en el eje de ordenadas; otros dos vértices opuestos son B(-1,-1) y D(-5,3). Halla las coordenadas de los vértices A y C y el área del rombo.

Sea
$$A \in \text{eje } Y \to A = (0, y_1)$$
 y sea el punto $C = (x_2, y_2)$.

Como estamos trabajando con un rombo, sus diagonales AC y BD se cortan en su punto medio, M. Además, $AC \perp BD$.



- $M\left(\frac{-1-5}{2}, \frac{-1+3}{2}\right) = (-3, 1)$ es el punto medio de BD (y de AC).
- Sea d la recta perpendicular a BD por M (será, por tanto, la que contiene a AC):

$$\overrightarrow{BD} = (-4,4) \rightarrow \overrightarrow{d} = (4,4)$$
 es vector dirección de d

$$M(-3,1) \in d$$

$$\rightarrow \begin{cases} \text{La pendiente de } d \text{ es } m_d = \frac{4}{4} = 1 \\ M(-3,1) \in d \end{cases} \rightarrow d: y - 1 = (x+3) \rightarrow d: y = x+4$$

• Así

$$A = d \cap \text{eje } Y: \begin{cases} y = x + 4 \\ x = 0 \end{cases} \rightarrow y = 4 \rightarrow A(0, 4)$$

•
$$M$$
 es el punto medio de $AC \to (-3, 1) = \left(\frac{0 + x_2}{2}, \frac{4 + y_2}{2}\right) \to \begin{cases} -3 = \frac{x_2}{2} \to x_2 = -6\\ 1 = \frac{4 + y_2}{2} \to y_2 = -2 \end{cases} \to C(-6, -2)$

• Área =
$$\frac{|\overrightarrow{AC}||\overrightarrow{BD}|}{2}$$

$$\begin{vmatrix} \overrightarrow{AC} \mid = \mid (-6, -6) \mid = \sqrt{72} = 6\sqrt{2} \\ |\overrightarrow{BD} \mid = \mid (-4, 4) \mid = \sqrt{32} = 4\sqrt{2} \end{vmatrix} \rightarrow \text{Area} = \frac{6\sqrt{2} \cdot 4\sqrt{2}}{2} = 24 \text{ u}^2$$

92 Un punto P, que es equidistante de los puntos A(3, 4) y B(-5, 6), dista el doble del eje de abscisas que del eje de ordenadas. ¿Cuáles son las coordenadas de P?

•
$$d(P, OX) = 2d(P, OY) \rightarrow |y| = 2|x| \rightarrow \begin{cases} y = 2x \\ y = -2x \end{cases}$$

•
$$|\overrightarrow{AP}| = |\overrightarrow{PB}| \rightarrow \sqrt{(x-3)^2 + (y-4)^2} = \sqrt{(-5-x)^2 + (6-y)^2} \rightarrow$$

 $\rightarrow x^2 + 9 - 6x + y^2 + 16 - 8y = x^2 + 25 + 10x + y^2 + 36 - 12y \rightarrow$
 $\rightarrow -6x - 8y + 25 = 10x - 12y + 61 \rightarrow 16x - 4y + 36 = 0 \rightarrow 4x - y + 9 = 0$

• Como deben cumplirse las dos condiciones, habrá dos soluciones:

$$P_1: \begin{cases} y = 2x \\ 4x - y + 9 = 0 \end{cases} \to 4x - 2x + 9 = 0 \to x = \frac{-9}{2} \to y = -9$$

Luego:
$$P_1\left(\frac{-9}{2}, -9\right)$$

$$P_{2}:\begin{cases} y = -2x \\ 4x - y + 9 = 0 \end{cases} \to 4x + 2x + 9 = 0 \to x = \frac{-9}{6} = \frac{-3}{2} \to y = 3$$

Luego:
$$P_2\left(\frac{-3}{2},3\right)$$

- 93 De todas las rectas que pasan por el punto A(1, 2), halla la pendiente de aquella cuya distancia al origen es 1.
 - Esas rectas tienen por ecuación:

$$y = 2 + m(x - 1) \rightarrow mx - y + (2 - m) = 0$$

•
$$d(0, r) = 1 \rightarrow \frac{|2-m|}{\sqrt{m^2+1}} = 1 \rightarrow \begin{cases} 2-m = \sqrt{m^2+1} \\ 2-m = -\sqrt{m^2+1} \end{cases} \rightarrow$$

$$\rightarrow (2-m)^2 = m^2+1 \rightarrow 4+m^2-4m = m^2+1 \rightarrow 4-4m = 1 \rightarrow m = \frac{3}{4}$$

94 Halla el punto de la recta 2x-4y-1=0 que con el origen de coordenadas y el punto P(-4,0) determina un triángulo de área 6.

$$OP = (-4, 0)$$
. Lado $OP: y = 0$

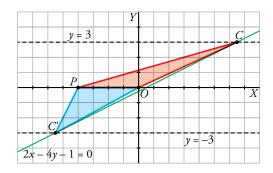
Base =
$$4 u$$

Área =
$$\frac{1}{2}$$
 · base · altura = $6 \rightarrow \frac{1}{2}$ · 4 · altura = $6 \rightarrow$ altura = 3

El punto C = (x, y) verifica: $C \in r$ y dist(C, lado OP) = 3.

$$\begin{cases} 2x - 4y - 1 = 0 \\ |y| = 3 \end{cases} \to \begin{cases} y = 3 \to x = \frac{13}{2} \\ y = -3 \to x = -\frac{11}{2} \end{cases}$$

Hay dos soluciones: $C = \left(\frac{13}{2}, 3\right)$ y $C' = \left(-\frac{11}{2}, -3\right)$



Página 213

Cuestiones teóricas

95 Prueba que si las rectas ax + by + c = 0 y a'x + b'y + c' = 0 son perpendiculares, se verifica que aa' + bb' = 0.

• El vector (a, b) es perpendicular a la recta ax + by + c = 0.

• El vector (a', b') es perpendicular a la recta a'x + b'y + c' = 0.

• Si las dos rectas son perpendiculares, entonces:

 $(a, b) \cdot (a', b') = 0$; es decir, aa' + bb' = 0.

96 Dada la recta de ecuación ax + by + c = 0, prueba que el vector $\overrightarrow{v} = (a, b)$ es ortogonal a cualquier vector determinado por dos puntos de la recta.

* Llama $A(x_1, y_1)$ y $B(x_2, y_2)$ a dos puntos genéricos de la recta y haz $\overrightarrow{v} \cdot \overrightarrow{AB}$.

• Si $A(x_1, y_1)$ pertenece a la recta, entonces ax_1

• Si $B(x_2, y_2)$ pertenece a la recta, entonces $ax_2 + by_2 + c = 0$

• Restando las dos igualdades:

Esta última igualdad significa que:

 $(a, b) \cdot (x_1 - x_2, y_1 - y_2) = 0$; es decir, que el vector (a, b) es perpendicular al vector \overrightarrow{AB} , siendo A y B dos puntos cualesquiera de la recta.

97 a) ¿Qué se puede decir de una recta si en su ecuación general falta el término independiente?

b) ¿Y si falta el término en x?

c) ¿Y si falta el término en y?

a) La recta pasa por (0, 0).

b) Es una recta horizontal (paralela al eje OX).

c) Es una recta vertical (paralela al eje OY).

98 Demuestra que las coordenadas del baricentro del triángulo de vértices $A(x_1, y_1)$, $B(x_2, y_2)$ y $C(x_3, y_3)$ son:

$$G\left(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3}\right)$$

* Utiliza que $2\overrightarrow{GM} = \overrightarrow{BG}$ donde M es el punto medio de AC.

$$G = (x, y)$$

$$M_{AC} = \left(\frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2}\right)$$

$$2\overrightarrow{GM}_{AC} = \overrightarrow{BG}$$

$$2\left(\frac{x_1+x_3}{2}-x,\frac{y_1+y_3}{2}-y\right)=(x-x_2,y-y_2)$$

$$\begin{cases} 2\left(\frac{x_1+x_3}{2}-x\right) = x-x_2 \\ 2\left(\frac{y_1+y_3}{2}-y\right) = y-y_2 \end{cases} \rightarrow \begin{cases} x_1+x_3-2x = x-x_2 \\ y_1+y_3-2y = y-y_2 \end{cases} \rightarrow \begin{cases} x_1+x_3+x_2 = 3x \\ y_1+y_3+y_2 = 3y \end{cases} \rightarrow \begin{cases} x = \frac{x_1+x_3+x_2}{3} \\ y = \frac{y_1+y_3+y_2}{3} \end{cases}$$

99 Demuestra que si una recta corta a los ejes de coordenadas en los puntos (a, 0) y (0, b), con a, $b \neq 0$, entonces su ecuación se puede expresar en la forma canónica o segmentaria:

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$r: ax + by + c = 0$$

r no pasa por el origen de coordenadas porque $a, b \neq 0$, luego $c \neq 0$.

Dividimos la ecuación entre -c:

$$r: \frac{x}{a'} + \frac{y}{b'} - 1 = 0$$

Si corta en (0, b):

$$x = 0 \rightarrow \frac{y}{h'} = 1 \rightarrow b' = b$$

Si corta en (a, 0):

$$y = 0 \rightarrow \frac{x}{a'} = 1 \rightarrow x = a' = a$$

Luego la ecuación de r es: $\frac{x}{a} + \frac{y}{b} - 1 = 0 \rightarrow \frac{x}{a} + \frac{y}{b} = 1$

Para profundizar

Las rectas x+y-2=0 y 9x-3y-4=0 son dos alturas del triángulo ABC de vértice A(2,2). Halla las ecuaciones de los lados del triángulo.

A no pertenece a ninguna de las dos alturas, luego los lados del triángulo estarán en las rectas que pasan por A = (2, 2) y son perpendiculares a las rectas dadas.

r: x + y - 2 = 0 tiene vector de dirección (-1, 1).

El *lado AB* tiene vector de dirección $\vec{d} = (1, 1)$ y pasa por A = (2, 2).

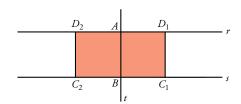
Lado AB:
$$\frac{x-2}{1} = \frac{y-2}{1} \to x-2 = y-2 \to x-y=0$$

s: 9x - 3y - 4 = 0 tiene vector de dirección $\vec{d} = (-3, 9) = 3(-1, 3)$.

El *lado AC* tiene vector de dirección $\vec{d} = (3, 1)$ y pasa por A = (2, 2).

Lado AC:
$$\frac{x-2}{3} = \frac{y-2}{1} \rightarrow x-2 = 3y-6 \rightarrow x-3y-4 = 0$$

101 Dos vértices contiguos de un cuadrado son A(3, 1) y B(4, 5). Calcula los otros vértices. ¿Cuántas soluciones hay?



C y D son puntos de las rectas s y r perpendiculares a AB, y cuyas distancias a B y A, respectivamente, son $|\overrightarrow{AB}|$:

$$\overrightarrow{AB} = (1,4) \rightarrow s: x + 4y + k = 0$$

$$Como B \in s$$

$$\rightarrow 4 + 20 + k = 0 \rightarrow k = -24 \rightarrow s: x + 4y - 24 = 0$$

$$\overrightarrow{AB} = (1,4) \rightarrow r: x + 4y + k' = 0$$
Como $A \in r$

$$\rightarrow 3 + 4 + k' = 0 \rightarrow k' = -7 \rightarrow r: x + 4y - 7 = 0$$

$$\overrightarrow{AB} = (1,4) \to t: 4x - y + k'' = 0$$
Como $A \in t$

$$\rightarrow 12 - 1 + k'' = 0 \to k'' = -11 \to t: 4x - y - 11 = 0$$

• C y D son puntos que están en las rectas cuya distancia a AB es $|\overrightarrow{AB}| = \sqrt{17}$. Sean P(x, y) tales que:

$$dist(P, t) = \frac{|4x - y - 11|}{\sqrt{17}} = \sqrt{17}$$

$$\begin{cases} 4x - y - 11 = 17 \rightarrow \\ 4x - y - 11 = -17 \rightarrow \end{cases} \begin{cases} t_1: 4x - y - 28 = 0 \\ t_2: 4x - y + 6 = 0 \end{cases}$$

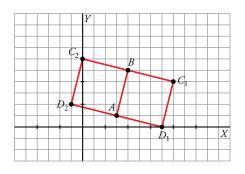
Son dos rectas paralelas. Hay dos soluciones. Así:

$$C_1 = t_1 \cap s \begin{cases} 4x - y - 28 = 0 \\ x + 4y - 24 = 0 \end{cases} \rightarrow x = 24 - 4y \rightarrow 96 - 16y - y - 28 = 0 \rightarrow y = 4 \rightarrow x = 8 \rightarrow C_1(8, 4)$$

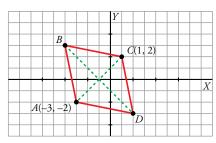
$$C_2 = t_2 \cap s \begin{cases} 4x - y + 6 = 0 \\ x + 4y - 24 = 0 \rightarrow x = 24 - 4y \end{cases} \rightarrow 96 - 16y - y + 6 = 0 \rightarrow y = 6 \rightarrow x = 0 \rightarrow C_2(0, 6)$$

$$D_1 = t_1 \cap r \begin{cases} 4x - y - 28 = 0 \\ x + 4y - 7 = 0 \\ 0 \rightarrow x = 7 - 4y \end{cases} \rightarrow 28 - 16y - y - 28 = 0 \rightarrow y = 0 \rightarrow x = 7 \rightarrow D_1(7, 0)$$

$$D_2 = t_2 \cap r \begin{cases} 4x - y + 6 = 0 \\ x + 4y - 7 = 0 \\ 0 \rightarrow x = 7 - 4y \end{cases} \rightarrow 28 - 16y - y + 6 = 0 \rightarrow y = 2 \rightarrow x = -1 \rightarrow D_2(-1, 2)$$



102 La diagonal menor de un rombo mide lo mismo que su lado y sus extremos son los puntos A(-3,-2) y C(1,2). Halla los vértices B y D y el perímetro del rombo.



• $\overrightarrow{AC} = (4,4) \rightarrow |\overrightarrow{AC}| = \sqrt{32} = 4\sqrt{2}$

Como esta diagonal mide lo mismo que el lado, entonces el perímetro será:

Perímetro =
$$4 |\overrightarrow{AC}| = 16\sqrt{2}$$

• Los otros dos vértices están en la perpendicular de \overrightarrow{AC} por su punto medio M(-1, 0).

La recta AC tiene por vector director $(1,1) \rightarrow x - y + k = 0$ Como, además, $A(-3,-2) \in \text{recta } AC$

$$\rightarrow -3 + 2 + k = 0 \rightarrow k = 1 \rightarrow AC: x - y + 1 = 0$$

La recta s perpendicular a AC será:

$$\begin{cases}
s: x + y + k' = 0 \\
\text{Como } M(-1, 0) \in s
\end{cases} \to -1 + k' = 0 \to k' = 1 \to s: x + y + 1 = 0$$

Los puntos B y C serán los (x, y) que estén en s y cuya distancia al vértice A sea igual a la diagonal, es decir, igual a $4\sqrt{2}$.

$$(x, y) \in s \rightarrow x + y + 1 = 0 \rightarrow x = -1 - y$$

$$\sqrt{(x+3)^2 + (y+2)^2} = 4\sqrt{2} \rightarrow (x+3)^2 + (y+2)^2 = 32 \rightarrow$$

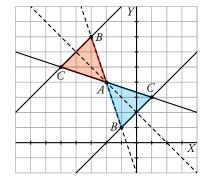
$$\rightarrow (2-y)^2 + (y+2)^2 = 32 \rightarrow 4 + y^2 - 4y + y^2 + 4 + 4y = 32 \rightarrow 2y^2 = 24 \rightarrow$$

$$\rightarrow y^2 = 12 \rightarrow \begin{cases} y_1 = 2\sqrt{3} \rightarrow x_1 = -1 - 2\sqrt{3} \\ y_2 = -2\sqrt{3} \rightarrow x_2 = -1 + 2\sqrt{3} \end{cases}$$

Luego, los vértices B y C son:

$$(-1-2\sqrt{3}, 2\sqrt{3})$$
 y $(-1+2\sqrt{3}, -2\sqrt{3})$

- 103 En un triángulo isósceles ABC con lado desigual BC, la ecuación del lado AB es 3x + y + 2 = 0 y la mediatriz del lado BC es x + y 2 = 0.
 - a) Calcula la ecuación del lado AC. b) Halla sus vértices si su área es 4 u².



a) Por ser el lado BC el lado desigual, la mediatriz de BC pasa por A.

 $A \in lado AB$, luego A es solución del sistema.

$$\begin{cases} x + y - 2 = 0 \\ 3x + y + 2 = 0 \end{cases} \rightarrow x = -2, y = 4 \rightarrow A = (-2, 4)$$

La mediatriz en este caso es la bisectriz del ángulo \hat{A} , luego el lado AC es la recta simétrica de AB respecto de la mediatriz s.

Buscamos un punto $Q \neq A$ de r = lado AB y encontramos su simétrico Q' respecto de s.

$$Q \in r \rightarrow x = 0 \rightarrow y = -2$$

$$Q = (0, -2)$$

Para hallar el simétrico de Q respecto de s, calculamos la recta l perpendicular a s que pasa por Q:

l tiene vector de dirección $\vec{d} = (1, 1)$ y pasa por Q = (0, -2).

$$l: \frac{x}{1} = \frac{y+2}{1} \rightarrow x = y+2 \rightarrow x-y-2 = 0$$

$$M = s \cap l$$

$$\begin{cases} x - y - 2 = 0 \\ x + y - 2 = 0 \end{cases} \to x = 2, y = 0 \to M = (2, 0)$$

M es el punto medio entre Q y Q' = (x, y):

$$(2, 0) = \left(\frac{x}{2}, \frac{y-2}{2}\right) \to \begin{cases} 2 = \frac{x}{2} \to x = 4\\ 0 = \frac{y-2}{2} \to y = 2 \end{cases} \to Q' = (4, 2)$$

La recta t pasa por A y por Q' = (4, 2).

$$\overrightarrow{AQ}' = (6, -2) = 2(3, -1)$$

$$t: \frac{x+2}{3} = \frac{y-4}{-1} \rightarrow -x-2 = 3y-12 \rightarrow -x-3y+10 = 0$$

Lado
$$AC = t: -x - 3y + 10 = 0$$

b) Lado BC = s' es perpendicular a la mediatriz $\rightarrow s: x + y - 2 = 0$

$$s': x - y + k = 0$$

Altura =
$$dist(A, lado BC) = \frac{|-2-4+k|}{\sqrt{2}} = \frac{|-6+k|}{\sqrt{2}} = \frac{|k-6|}{\sqrt{2}}$$

 $B \in lado AB \cap s'$

$$B \to \begin{cases} 3x + y + 2 = 0 \\ x - y + k = 0 \end{cases} \to x = -\frac{1}{4}k - \frac{1}{2}, y = \frac{3}{4}k - \frac{1}{2} \to B = \left(-\frac{1}{4}k - \frac{1}{2}, \frac{3}{4}k - \frac{1}{2}\right)$$

 $C \in lado AC \cap s'$

$$C \to \begin{cases} -x - 3y + 10 = 0 \\ x - y + k = 0 \end{cases} \to x = \frac{5}{2} - \frac{3}{4}k, \ y = \frac{1}{4}k + \frac{5}{2} \to C = \left(\frac{5}{2} - \frac{3}{4}k, \frac{1}{4}k + \frac{5}{2}\right)$$

$$\overrightarrow{CB} = \left(-\frac{1}{4}k - \frac{1}{2}, \frac{3}{4}k - \frac{1}{2}\right) - \left(\frac{5}{2} - \frac{3}{4}k, \frac{1}{4}k + \frac{5}{2}\right) = \left(\frac{1}{2}k - 3, \frac{1}{2}k - 3\right)$$

$$|\overrightarrow{CB}| = \frac{k-6}{\sqrt{2}} = \text{base}$$

Área =
$$4 = \frac{1}{2} \frac{|k-6|}{\sqrt{2}} \cdot \frac{k-6}{\sqrt{2}}$$

Hay dos posibilidades debido al valor absoluto:

$$\begin{cases} 4 = \frac{1}{2} \frac{k-6}{\sqrt{2}} \cdot \frac{k-6}{\sqrt{2}} \rightarrow 16 = (k-6)^2 \rightarrow k = 2, \ k = 0 \\ -4 = \frac{1}{2} \frac{k-6}{\sqrt{2}} \cdot \frac{k-6}{\sqrt{2}} \rightarrow \text{No tiene solución.} \end{cases}$$

Hay dos soluciones:

Si
$$k = 2 \rightarrow lado\ BC: x - y + 2 = 0 \rightarrow B = (-1, 1);\ C = (1, 3)$$

Si
$$k = 10 \rightarrow lado\ BC: x - y + 10 = 0 \rightarrow B = (-3, 7);\ C = (-5, 5)$$

104 A(1, 1) y B(5, 1) son dos vértices de un trapecio rectángulo y uno de sus lados está sobre la recta y = x + 1. Calcula los otros dos vértices (hay dos soluciones).

Podemos comprobar que $A, B \notin r$.

Como un lado está sobre r, los otros dos vértices están en r y, por tanto, A y B son vértices consecutivos.

Además, un vector dirección de r es $\overrightarrow{r} = (1, 1)$, que no es proporcional a $\overrightarrow{AB} = (4, 0)$.

Por tanto, $\vec{r} \# \overrightarrow{AB} \rightarrow \text{los lados } AB \text{ y } CD \text{ no son paralelos, luego no son las bases del trapecio.}$

Podemos construir dos trapecios:

a) ABC_1D_1 , donde AB es la altura del trapecio:

 C_1 y D_1 serán los puntos de corte de r con las rectas perpendiculares a AB que pasan por B y A, respectivamente.

$$\begin{array}{c}
\bullet \ t \perp \overrightarrow{AB} \rightarrow 4x + k = 0 \\
\text{Como } A(1,1) \in t
\end{array}$$

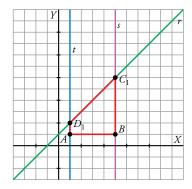
$$\begin{array}{c}
\bullet \ t + k = 0 \rightarrow k = -4 \rightarrow t : 4x - 4 = 0 \rightarrow t : x = 1
\end{array}$$

Así:
$$D_1 = t \cap r$$
:
$$\begin{cases} x = 1 \\ y = x + 1 \end{cases} \to y = 2 \to D_1(1, 2)$$

$$\begin{array}{c}
\bullet \ s \perp \overrightarrow{AB} \rightarrow 4x + k = 0 \\
\text{Como } B(5,1) \in s
\end{array}$$

$$\rightarrow 4 \cdot 5 + k = 0 \rightarrow k = -20 \rightarrow s: 4x - 20 = 0 \rightarrow s: x = 5$$

Así:
$$C_1 = s \cap r$$
:
$$\begin{cases} x = 5 \\ y = x + 1 \end{cases} \to y = 6 \to C_1(5, 6)$$



b) ABC_2D_2 , donde C_2D_2 es la altura del trapecio:

 C_2 y D_2 serán los puntos de corte de r con las rectas perpendiculares a r que pasan por B y C, respectivamente (es decir, C_2 y D_2 son los pies de dichas perpendiculares).

•
$$t \perp r \rightarrow y = -x + k$$

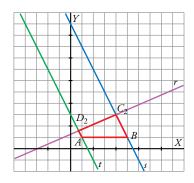
Como $A \in t$ $\rightarrow 1 = -1 + k \rightarrow k = 2 \rightarrow t: y = -x + 2$

Así:
$$D_2 = t \cap r$$
: $\begin{cases} y = -x + 2 \\ y = x + 1 \end{cases} \rightarrow -x + 2 = x + 1 \rightarrow 1 = 2x \rightarrow x = \frac{1}{2} \rightarrow y = \frac{3}{2} \rightarrow D_2(\frac{1}{2}, \frac{3}{2})$

•
$$s \perp r \rightarrow y = -x + k$$

Como $B \in s$ $\rightarrow 1 = -5 + k \rightarrow k = 6 \rightarrow s: y = -x + 6$

Así:
$$C_2 = s \cap r$$
:
$$\begin{cases} y = -x + 6 \\ y = x + 1 \end{cases} \rightarrow -x + 6 = x + 1 \rightarrow 5 = 2x \rightarrow x = \frac{5}{2} \rightarrow y = \frac{7}{2} \rightarrow C_2\left(\frac{5}{2}, \frac{7}{2}\right)$$



105 Toda recta se puede expresar como $x \cos \theta + y \sin \theta = d$, donde θ es el ángulo que forma la recta con el eje de ordenadas y d es su distancia al origen de coordenadas (se conoce como ecuación de Hesse). Escribe en esa forma la recta 4x + 3y - 12 = 0.

$$dist(O, r) = \frac{\left|-12\right|}{5}$$

$$d = \frac{|-12|}{5} = \frac{12}{5}$$

Dividimos entre 5 en la ecuación de la recta y obtenemos:

$$\frac{4}{5}x + \frac{3}{5}y = \frac{12}{5} \rightarrow 0, 8x + 0, 6y = \frac{12}{5}$$

$$0.8 = \cos 36^{\circ} 52'$$

Luego la ecuación que buscamos es: $x \cos 36^{\circ} 52' + y \sin 36^{\circ} 52' = \frac{12}{5}$

Página 213

Autoevaluación

- 1 Se consideran los puntos A(0, 1), B(4, 9) y C(-4, k).
 - a) Calcula las coordenadas de un punto P que divide al segmento AB en dos partes tales que $\overrightarrow{AP} = \frac{1}{3} \overrightarrow{PB}$.
 - b) Determina k para que el punto C sea el simétrico de B respecto de A.
 - a) A(0, 1), B(4, 9), C(-4, k)

Sea P(x, y):

$$\overrightarrow{AP} = \frac{1}{3} \overrightarrow{PB} \to (x, y - 1) = \frac{1}{3} (4 - x, 9 - y) \to \begin{cases} 3x = 4 - x \to x = 1 \\ 3y - 3 = 9 - y \to y = 3 \end{cases} \to P(1, 3)$$

b) A debe ser el punto medio de CB.

$$(0, 1) = \left(\frac{4-4}{2}, \frac{9+k}{2}\right) \rightarrow 9+k=2 \rightarrow k=-7$$

- 2 Calcula la ecuación de estas rectas:
 - a) Pasa por A(3, 2) y por B(-2, 1), en forma paramétrica e implícita.
 - b) Pasa por (0, 0) y tiene pendiente $m = -\frac{1}{3}$, en forma continua y explícita.
 - a) Vector dirección $\vec{d} = \overrightarrow{BA} = (5, 1)$. Vector de posición: $\vec{p}(3, 2)$

Ecuaciones paramétricas: $\begin{cases} x = 3 + 5t \\ y = 2 + t \end{cases}$

$$t = y - 2$$
; $x = 3 + 5(y - 2) = 3 + 5y - 10 \rightarrow x - 5y + 7 = 0$

Ecuación implícita: x - 5y + 7 = 0

b) $m = -\frac{1}{3}$ \rightarrow vector dirección: $\vec{d}(3, -1)$

Ecuación continua: $\frac{x}{3} = \frac{y}{-1}$

$$3y = -x \rightarrow y = -\frac{x}{3}$$

Ecuación explícita: $y = -\frac{x}{3}$

- 3 Halla las ecuaciones de las siguientes rectas:
 - a) Pasa por P(2, -3) y es perpendicular a $y = \frac{-2}{5}x + 1$.
 - b) Es paralela a 2x + 3y + 1 = 0 y su ordenada en el origen es 2.
 - a) Una recta perpendicular a la dada tiene pendiente $m = \frac{5}{2}$. Como ha de pasar por P(2, -3), su ecuación es:

$$y + 3 = \frac{5}{2}(x - 2) \rightarrow 2y + 6 = 5x - 10 \rightarrow 5x - 2y - 16 = 0$$

b) Una recta paralela a 2x + 3y + 1 = 0 es 2x + 3y + k = 0.

Como ha de pasar por (0, 2), debe ser k = -6.

La recta buscada es 2x + 3y - 6 = 0.

4 Escribe la ecuación del haz de rectas que pasa por (5, 1) y halla la recta de dicho haz que pasa por (0, 1).

El haz de rectas que pasa por el punto (5, 1) es a(x-5) + b(y-1) = 0.

La recta del haz que pasa por (0, 1) es la recta que pasa por (5, 1) y por (0, 1). Por tanto, su ecuación es:

$$\frac{x}{5} = \frac{y-1}{0} \rightarrow y = 1$$

5 Estudia la posición relativa de las rectas r y s y de las rectas r y t, donde:

$$r: 3x + 5y - 34 = 0$$
 $s: y = \frac{5}{3}x$ $t: \begin{cases} x = k \\ y = 2 \end{cases}$

• Posición relativa de r y s:

Vector dirección de r, $\overrightarrow{d_r}(-5,3)$ Vector dirección de s, $\overrightarrow{d_s}(3,5)$ r y s son perpendiculares.

• Posición relativa de r y t:

Vector dirección de t, $\overrightarrow{d_t}(1,0)$ Vector dirección de r, $\overrightarrow{d_r}(-5,3)$ r y t son secantes.

6 Calcula k para que las rectas r: y = 3 y s: y = kx + 1 formen un ángulo de 60°.

La recta r: y = 3 es paralela al eje de abscisas. Así, la tangente del ángulo que forman r y s coincide con la pendiente de s, que es igual a k. Es decir:

7 Considera los puntos A(0, k) y B(8, 5) y la recta r: 3x + 4y + 1 = 0. Determina el valor de k para que:

- a) La distancia entre A y B sea igual a 10.
- b) La distancia entre A y r sea 1.

a)
$$dist(A, B) = \sqrt{8^2 + (5 - k)^2} = \sqrt{64 + 25 + k^2 - 10k} = 10 \implies k^2 - 10k - 11 = 0 \implies k = 11$$

b)
$$dist(A, r) = \frac{|3 \cdot 0 + 4 \cdot k + 1|}{\sqrt{3^2 + 4^2}} = \frac{|4k + 1|}{5} = 1$$
 $4k + 1 = 5 \rightarrow k = 1$ $4k + 1 = -5 \rightarrow k = -3/2$

8 En el triángulo de vértices A(-3, 2), B(1, 3) y C(4, 1), halla el ortocentro y el circuncentro.

ORTOCENTRO: $R = h_A \cap h_B \cap h_C$ donde h_A , h_B y h_C son las tres alturas (desde A, B y C, respectivamente).

•
$$h_A \begin{cases} \overrightarrow{a} \perp \overrightarrow{BC} = (3, -2) \rightarrow \overrightarrow{a} = (2, 3) \\ A \in h_A \end{cases} \rightarrow h_A : \begin{cases} x = -3 + 2t \\ y = 2 + 3t \end{cases} \rightarrow \frac{x + 3}{2} = \frac{y - 2}{3} \rightarrow h_A : 3x - 2y + 13 = 0$$

•
$$h_B$$
 $\begin{cases} \vec{b} \perp \overrightarrow{AC} = (7, -1) \rightarrow \vec{b} = (1, 7) \\ B \in h_B \end{cases}$ $\rightarrow h_B$: $\begin{cases} x = 1 + t \\ y = 3 + 7t \end{cases}$ $\rightarrow x - 1 = \frac{y - 3}{7} \rightarrow h_B$: $7x - y - 4 = 0$

$$\bullet \ \mathbf{h}_C \begin{cases} \overrightarrow{\mathbf{c}} \perp \overrightarrow{AB} = (4,1) \rightarrow \overrightarrow{\mathbf{c}} = (1,-4) \\ C \in \mathbf{h}_C \end{cases} \rightarrow \mathbf{h}_C : \begin{cases} x = 4+t \\ y = 1-4t \end{cases} \rightarrow x - 4 = \frac{y-1}{-4} \rightarrow \mathbf{h}_C : 4x + y - 17 = 0$$

Bastaría con haber calculado dos de las tres alturas y ver el punto de intersección:

$$h_B \cap h_C: \begin{cases} 7x - y - 4 = 0 \\ 4x + y - 17 = 0 \end{cases}$$
Sumando:
$$11x - 21 = 0 \rightarrow x = \frac{21}{11}; \ y = 7x - 4 = 7 \cdot \frac{21}{11} - 4 = \frac{147 - 44}{11} = \frac{103}{11} \rightarrow R\left(\frac{21}{11}, \frac{103}{11}\right)$$

NOTA: Puede comprobarse que el ortocentro, R, está también en h_A . Basta con sustituir en su ecuación. CIRCUNCENTRO: $S = m_A \cap m_B \cap m_C$ donde m_A , m_B y m_C son las tres mediatrices (desde A, B y C, respectivamente)

•
$$m_A$$

$$\begin{cases} \overrightarrow{a} \perp \overrightarrow{BC} \rightarrow \overrightarrow{a} = (2,3) \\ \text{Punto medio de } BC: \ M\left(\frac{5}{2},2\right) \in m_A \end{cases} \rightarrow y - 2 = \frac{3}{2}\left(x - \frac{5}{2}\right) \rightarrow y = \frac{3}{2}x - \frac{7}{4}$$

•
$$m_C$$

$$\begin{cases} \overrightarrow{c} \perp \overrightarrow{AB} = (4,1) \rightarrow \overrightarrow{c} = (1,-4) \\ \text{Punto medio de } AB: M'\left(-1,\frac{5}{2}\right) \in m_C \end{cases} \rightarrow y - \frac{5}{2} = -4(x+1) \rightarrow y = -4x - \frac{3}{2}$$

Así:

$$S = m_A \cap m_C : \begin{cases} y = \frac{3}{2}x - \frac{7}{4} \\ y = -4x - \frac{3}{2} \end{cases} \rightarrow \frac{3}{2}x - \frac{7}{4} = -4x - \frac{3}{2} \rightarrow \\ \rightarrow 6x - 7 = -16x - 6 \rightarrow 22x = 1 \rightarrow x = \frac{1}{22} \rightarrow \\ \rightarrow y = -4 \cdot \frac{1}{22} - \frac{3}{2} = \frac{-4 - 33}{22} = \frac{-37}{22} \end{cases}$$

Así,
$$S\left(\frac{1}{22}, \frac{-37}{22}\right)$$
.

NOTA: Se podría calcular m_B y comprobar que $S \in m_B$.